

Federation.peche74@wanadoo.fr

DESS "Qualité et traitement des eaux" option Systèmes aquatiques et Bassin versants

Faisabilité de réintroduction de l'écrevisse pieds blancs (Austropotamobius pallipes) en Haute-Savoie.

- ANNEXES -

TIOZZO Julien

Maître de stage: Mr CAUDRON Arnaud

Fédération de pêche de Haute, Savoie.

Jury

Mr VERNEAUX Jean Mr BADOT Pierre-Marie Mr DEGIORGI François Mr BLONDE Jean-Louis Mr CAUDRON A. Tuteur de stage, professeur, Université de Franche-Comté Professeur, Directeur de DESS, Université de Franche-Comté Directeur de stage, Maître de conférence, Université de Franche-Comté Maître de conférence, Université de Franche-Comté Maître de stage, Fédération de pêche de Haute-Savoie.

> Avril-Septembre 2004 N°1292 OTE

Liste des Annexes

-	Annexe n°1: Cartographies issues de l'étude des bassins versants des cinq cour d'eau sélectionnés
-	Annexe n°2 : Cartographies des pôles d'attractions, points de prélèvements et lister complètes de la Macrofaune benthique échantillonnée et déterminée au genre pour les Epheméroptères, les Plécoptères, Trichoptères et Coléoptères
-	Annexe n°3 : Représentation cartographique de l'habitat des stationsP20
-	Annexe n°4: Calcul de l'indice de capacité biogénique secondaire CB2 et de coefficient morphodynamique m
-	Annexe n°5: Norme MAG 20
-	Annexe n°6: Biotypologie au Genre
-	Annexe n°7: Abaque biotypologique Ichtyologique
-	Annexe n°8: Protocole d'analyse de qualité des mosaïques d'habitats à l'échelle stationnelle

Annexes nº1

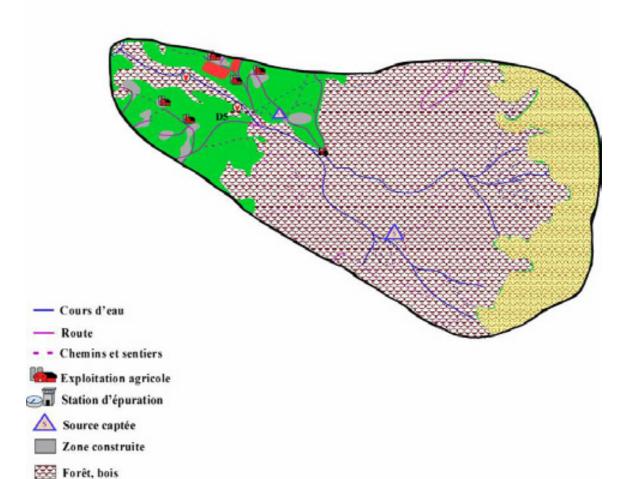
Cartographies issues de l'étude des bassins versants des cinq cours d'eau sélectionnés.

- a. Le creux de Nantisse
- b. Le creux de Berluz
- c. Le nant des Frasses
- d. Le ruisseau de Lagnat
- e. Le ruisseau de Coppy

Juillet 2004

Pâture Maïs

Plantation


(F) Abreuvoir

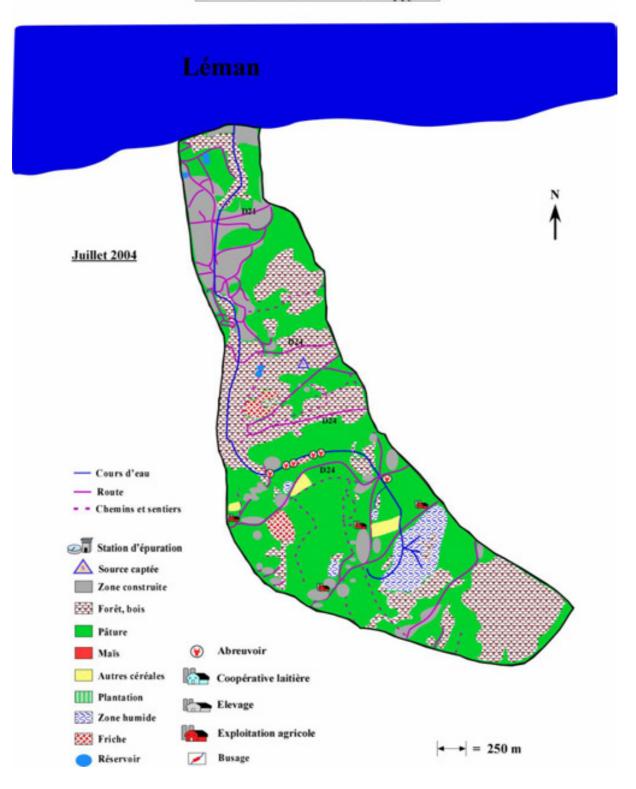
Stockage de bois

🖊 Passage d'engins agricoles et de débardage

Roche

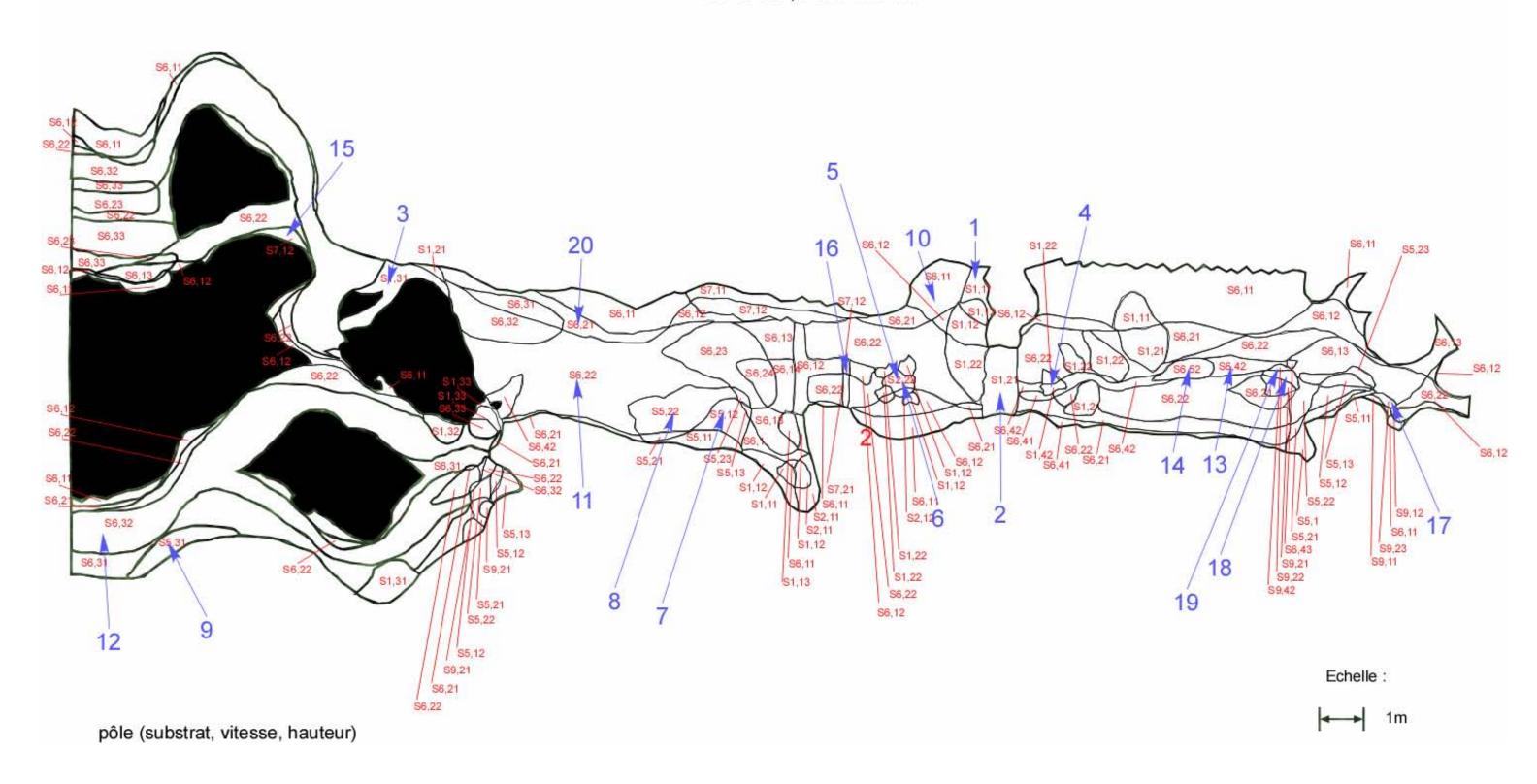
→ = 250 m

Bassin versant du ruisseau de Berluz



Bassin versant du ruisseau de Lagnat

Bassin versant du ruisseau de Coppy

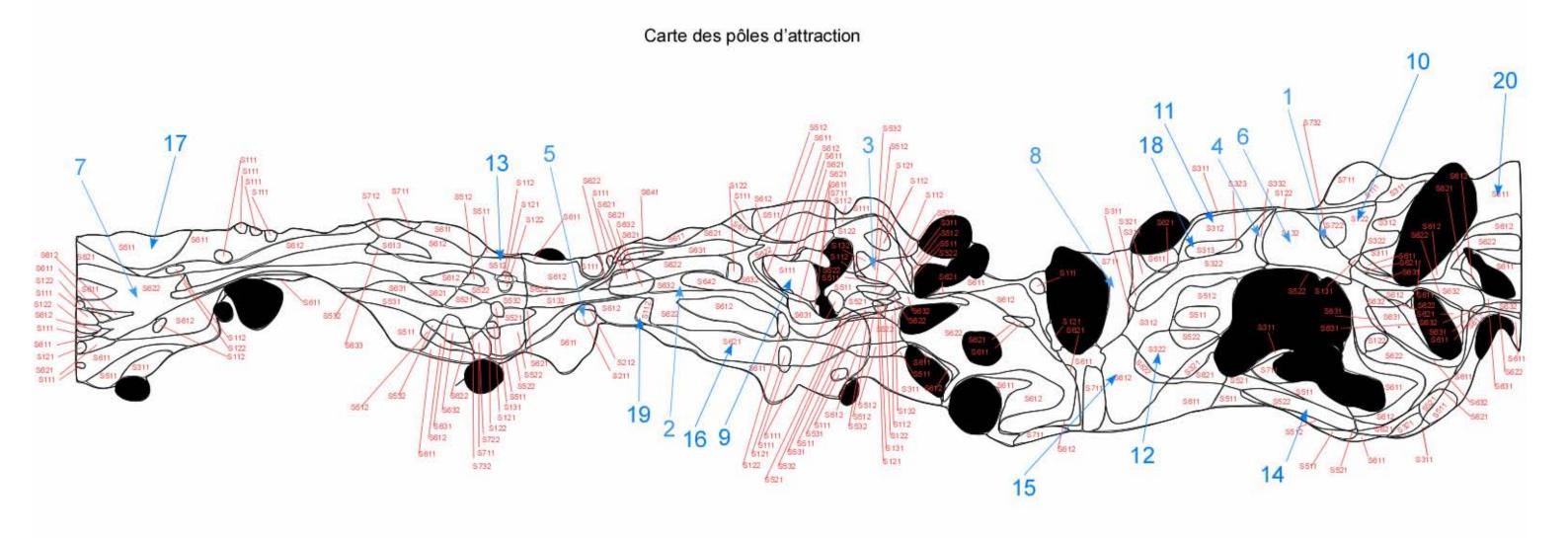


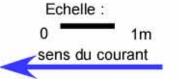
Annexes n°2

Cartographies des pôles, points de prélèvements et listes complètes de la faune Macrobenthique échantillonnée et déterminée au genre pour les Epheméroptères, les Plécoptères, Trichoptères et Coléoptères.

a.Le creux de Nantisseb.Le creux de Berluzc.Le nant des Frassesd.Le ruisseau de Lagnate.Le ruisseau de Coppy

Carte des pôles d'attraction


Nantisse

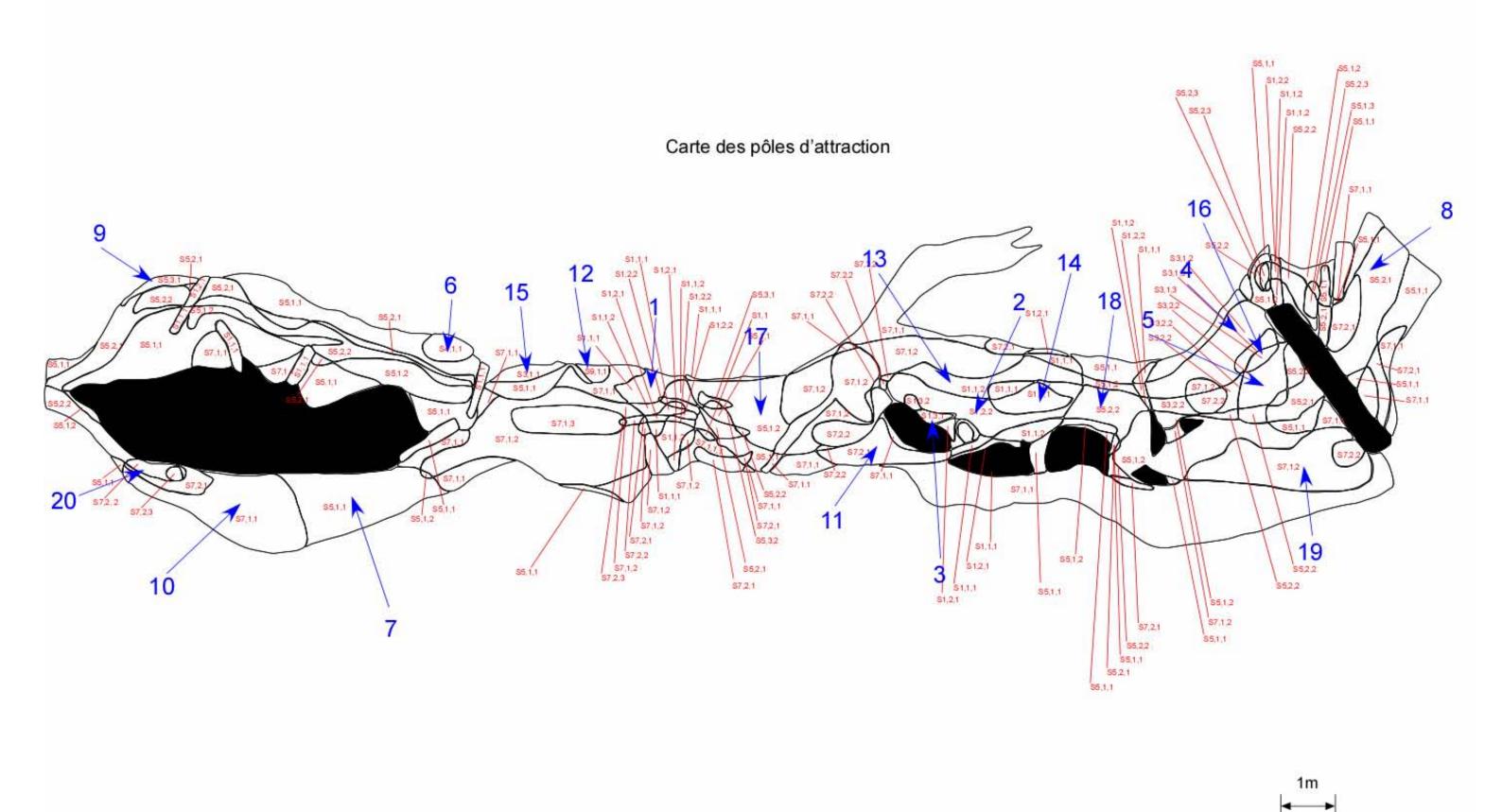

Cours d'eau : Nantisse
Date : 12/07/2004

	n°échantillon	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	Total
	code pôle	S922	S722	S632		S222	S131	S622		S112	S142	S212	S512	S522	S611	S621	S642	S652		S911	S942	<u> </u>
	% de recouvrement	0,14	0,10	20,10	0,78	0,20	0,82	0,2	2,17	1,35	0,09	0,36	0,98	1,85	12,06	5,34	1,28	0,40	1,27	0,05	0,04	74,34
GI	Taxon																					_
9	Perlidae																					
8	Perla																	1				1
	Odontoceridae Odontocerum				1	16						7	10	3	7	1						45
	Leuctridae				ı	10						,	10	3	/	ı						43
	Leuctra	1	1	1		1		2					1	2	4		4	2	1			20
_	Glossossomatidae			·													•	_				
7	Glossossoma			1				2									7	2				12
	Leptophlebiidae																					
	Habroleptoides			1												2			1			4
	Nemouridae																					
	Nemoura															6	2	1				9
	Amphinemoura	1						2										1	3	1	3	11
	Protonemoura	2	22			1	9	1	4	1	3	1					1	2	9	4	9	69
6	Sericostomatidae																					
	Sericostoma					2						3	3			2				1	1	12
	Notidobia	1																		1		2
	Ephemeridae Ephemera danica												1		2							3
5	Heptageniidae												ı									3
	Rhitrogena																	1				1
	Epeorus						1				1							1				3
	Ecdyonurus		L	1	1		L									2						4
	Rhyacophilidae																					
4	Rhyacophila		2																1			3
	Hyporyacophila											1										1
	Limnephilidae																					
	Autre							2														2
_	Hydropsychidae																					
3	Hydropsychae	1		4	_	_		2									10	1	3	_	16	37
	Diplectrona felix										1											1
	Ephemerellidae																					
	Ephemerella Gammaridae			1									1	1	1				1	6	2	1 12
	Baetidae			1										1	1				1	ь		12
	Baetis	2	1	1	5			5	4	18	8	2		2			14	28	1			91
	Elmidae		<u>'</u>							10	0						- 1-	20	<u>'</u>			
2	Stenelmis					1		2				3		1		1	2	1				11
	Normandia																			3		3
	Dupophilus		10		1			1	4		3						8	15	4	13	5	64
	Potamophilus										1								1			2
1	Oligochètes				4	11		1				12	5		12	1	4	22			3	75
	Chironomidae	300	350		<u> </u>	42	8	18	6	3			12	30		20	14	<u> </u>	60	9	115	987
	Triclades																					
	Planariidae	1																				1
	Diptère Limoniidae										1	4										2
	Athericidae	6		6	7	11		4			1	1	5	5	2	2	11	6	6	1	11	84
	Simulidae	4	18		– '–		4				14		5	5		4	- '	21	2	1	14	82
	Ceratopogonidae	2	-										1				1		_		1	5
	Stratiomydae	2																				2
	Psychodidae	1																	1		8	10
	Blephariceridae						2				4											6
	Coléoptère																					
	Heloploridae		<u> </u>	<u> </u>	<u> </u>	<u> </u>		<u> </u>												<u> </u>		
	Helophorus															2						2
	Hydraneidae																					
	Hydraena		6	2	5						1					1	4	13		1	4	37
	Curculionidae																			1		1
	Lépidoptère		1			}												-				1 1 1 1 1 1 1
	Abandanas l- the	204	111	40	0.4	O.L	O 4	40	40	20	27	24	20	11	20		00		0.4	40		
	Abondance relative	324	411	18	24	85	24	42	18	22	37	31	39	44	28	44	82	117	94	42	192	1719
	Abondance relative % Variété taxonomique	324 18,8 13		18 1,0 9	1,4 7	85 4,9 8	1,4 5	2,4 12	18 1,0 4	1,3 3	37 2,2 10	31 1,8 9	39 2,3 9	2,6 7	28 1,6 6	2,6 12	4,8 13	6,8 16	94 5,5 14	2,4 12	192 11,2 13	100

Cartographie des mosaïques d'habitat aquatique de Berluz, selon la logique du MAG 20

Berluz

 Cours d'eau :
 Berluz


 Date :
 25/06/2004

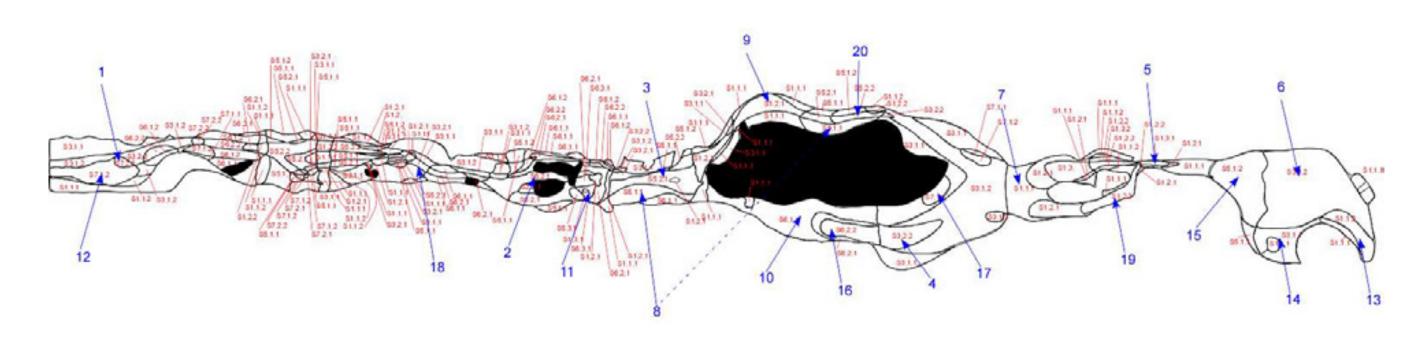
	n°échantillon code pôle	1 S732	2 S632	3 S532	4 S332	5 S211	6 S132	7 S622	8 S711	9 S111	10 S122	11 S312	12 S322	13 S512	14 S522	15 S612	16 S621	17 S511	18 S313	19 S112	20 S611	Total
	% de recouvrement	0,12	4,23	0,74	0,18	0,10	2,81	10,40	2,40	2,99	2,40	2,20	3,40	3,10	3,18	13,60	5,17	3,64	0,35	1,01	16,51	78,53
GI	Taxon	0,12	7,23	0,74	0,10	0,10	2,01	10,40	2,40	2,33	2,40	2,20	3,40	3,10	3,10	13,00	3,17	3,04	0,00	1,01	10,51	70,55
9	Taxon																					
8	Odontoceridae																					
	Odontocerum	1		1			2	1							1		4					10
	Leuctridae																					
7	Leuctra	2				2		6				1		1			1	3				16
	Leptophlebiidae																					
	Habrophlebia	2	1	2	5	5	2		3			1		13	1	2			1			38
	Nemouridae																					
	Nemoura						,											1				1
6	Protonemoura Sericostomatidae						1															1
	Sericostoma			2	3			1					2	1	1							10
	Ephemeridae				Ů																	10
	Ephemera danica			7	1	6			1			10	2	44	3	10		2	1			87
5	Heptageniidae																					
	Rhitrogena																1					1
	Epeorus																			1		1
	Ecdyonurus	1	5			1		8						1	1	2	1	1			2	23
4																						
	Limnephilidae													_					_			
	Potamophylax Allogamus	7		6	6 2				22					3				2	3		1	33
	Allogamus Halesus	/		2	2			2	7													9
3	Aptania	1						2	'													1
	Hydropsychidae	·																				
	Hydropsychae															1				2		3
	Ephemerellidae																					
	Ephemerella	1		1		2	4	4	1		2			1	2			2			3	23
	Gammaridae	18	22			78		11	6			20		15	10		8	37	25		20	270
	Baetidae																					
	Baetis	8	31			4		47								6						96
	Centroptilum		7					3			5	3		5	7		3	160	1	7	47	248
2	Elmidae <i>Elmi</i> s							4	,													-
	Stenelmis	1	1			1	1	4	1				1		3	2		2			2	5 19
	Mollusques		'			'	'		-													13
	Physidae																					
	Aplexa hypnorum														1							1
1	Oligochètes	10				2					12	22				1						47
	Chironomidae	17	3	80	90	18	34	8	53	22	17	80	30	50	20	25	3	30	110	15	80	785
	Hydracariens										3	1										4
	Nemathelminthes		_														_					
	Nematodes	10	5					4				10					2	20	12			63
	Diptère Limoniidae												1									1
	Empididae												-		1	2	1	1				5
	Athericidae	1	2	1		4				1					1	2	1	2	1		6	22
	Simulidae																			2	1	3
Autres taxons	Chaoboridae					3			2	3		4				1			2			15
uxons	Scatophagidae					1																1
	Rhagionidae															1						1
	Culicidae			1																		1
	Coléoptère		<u> </u>]]	<u> </u>															
	Helophorus										1											1
	Odonates Cordulegasteridae							1									1					2
	Hétéroptère							1									ı					2
	Vellidae												1									1
	Abondance relative	80	77	103	107	127	44	104	97	26	40	152	37	134	52	55	26	263	156	27	162	1869
	Abondance relative %	4,3	4,1	5,5	5,7	6,8	2,4	5,6	5,2	1,4	2,1	8,1	2,0	7,2	2,8	2,9	1,4	14,1	8,3	1,4	8,7	100
	Variété taxonomique	14	8	10	6	13	6	13	10	3	6	10	6	10	13	12	11	13	9	5	9	37
	Variété relative	37,8	21,6	27,0	16,2	35,1	16,2	35,1	27,0	8,1	16,2	27,0	16,2	27,0	35,1	32,4	29,7	35,1	24,3	13,5	24,3	100

Prélèvements IBGN

Cartographie des mosaïques d'habitat aquatique de Frasse, selon la logique du MAG 20

Pôles d'attraction (substrat, vitesse, hauteur)

Frasse


Cours d'eau : Frasse
Date : 10/06/2004

	n°échantillon	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	Total
	code pôle	S122	S322	S411	S511	S521	S711	S721	S911	S111	S131	S311	S531	S112	S121	S311	S313	S512	S522	S712	S722	
	% de recouvrement	2,14	2,18		17,10		2,48	3,80	0,21	3,41	0,15	2,46	0,41	2,95	1,58	1,03	0,32	8,18	4,99	15,64	1,98	79,0
GI	Taxon		, -	-,	, -	,	, -	.,	-,	- ,	,	, -	-,	,	,	,	-,-	-, -	,	- , -	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
	Perlodidae																				•	
9														4								1
	Isoperla										ŀ			1								+
8	Philopotamidae																					
	Philopotamus	2					1				ļ						1					4
	Leuctridae																					
7	Leuctra				2					2		2	1	1		1				2		11
-	Leptophlebiidae																					
	Habrophlebia		2	6	13	1		29	5			4	10	17	7	44		6	1	22	38	205
	Nemouridae										ľ											
	Protonemoura	76	32	4	2	1	70			59			1	28	1		8	6				288
	Sericostomatidae	1,0	02	-			70			- 00	ŀ											200
6											ŀ											_
	Sericostoma										-					4					1	5
	Ephemeridae										-											
	Ephemera danica				5			11	8			3		13	1	8		16	11	9	1	86
5																					<u> </u>	0
4	Psychomidae																					
7	Dives	1	1				1			1			1	2		1	1					9
-	Hydropsychidae														-							
3	Hydropsychae	2												2					1			5
	Gammaridae				10	20		8				1	15	32	36						\vdash	122
	Baetidae				10	20		0				ı	ıΰ	JZ	JU						\vdash	122
			_								ge				_		_	_			 	
	Baetis	42	9	8	5	3	27	1		11	ola		6	16	5	6	7	5		11		162
_	Centroptilum							1			formolage	2									<u> </u>	3
2	Elmidae										de f											
	Potamophilus					1					це											1
	Mollusques										oblème											
	Physidae										prol											
	Physidium															1						1
_	Oligochètes			2	3	2		19	13		un,p u		1		3	1			4			48
1	Chironomidae	8	4	30	20	10	15	12		2	raison	4	30	48	48	50				12	15	308
		0	4	30	20	10	13	12			rai	4	30	40	40	30				12	13	300
	Nemathelminthes										e eu		_								\vdash	.
	Nematodes										Pot inutilisable	1	3								-	4
	Diptère										tilis										-	
	Limoniidae										in			1				2				3
	Empididae						1				ğ											1
	Athericidae				6				1		_			5	1	3			3	2	3	24
	Tipulidae																				 	3
	Dixidae		1	1	,	4												1	2			
					1	4	2			2			1			1		-	2			15
	Simulidae	19		1	1	4	2			2			1	9		1	1	2	2			15 36
	Simulidae Chaoboridae	19	3		1	4	2	2		2				9	2		1	-	2			36
	Chaoboridae	19		4	1			2					1	9	2	1 2	1	-	2			36 11
	Chaoboridae Stratiomydae	19			1	4		2						9	2		1	-	2			36
	Chaoboridae Stratiomydae Coléoptère	19		4	1			2						9	2		1	-	2			36 11
	Chaoboridae Stratiomydae Coléoptère Psephenidae	19	3	4	1			2						9	2		1	-	2			36 11 8
	Chaoboridae Stratiomydae Coléoptère Psephenidae Eubria	19		4	1			2						9	2		1	-	2			36 11
	Chaoboridae Stratiomydae Coléoptère Psephenidae	19	3	4	1			2						9	2		1	-	2			36 11 8
	Chaoboridae Stratiomydae Coléoptère Psephenidae Eubria	19	3	4	1			2						9	2		1	-	2			36 11 8
	Chaoboridae Stratiomydae Coléoptère Psephenidae Eubria Hydrophilidae	19	3	4	1	4		2						9	2		1	-	2			36 11 8
	Chaoboridae Stratiomydae Coléoptère Psephenidae Eubria Hydrophilidae Anacaena	19	3	4	1	4		2						9	2		1	-	2			36 11 8
	Chaoboridae Stratiomydae Coléoptère Psephenidae Eubria Hydrophilidae Anacaena Hydroscaphidae Hydroscapha	19	3	4 4	1	4			3					9	2		1	2	2			36 11 8 1 2
	Chaoboridae Stratiomydae Coléoptère Psephenidae Eubria Hydrophilidae Anacaena Hydroscaphidae Hydroscapha Curculionidae	19	3	4	1	4		2	3					9	2		1	-				36 11 8 1
	Chaoboridae Stratiomydae Coléoptère Psephenidae Eubria Hydrophilidae Anacaena Hydroscaphidae Hydroscapha Curculionidae Hétéroptère	19	3	4 4	1	4			3					9	2		1	2				36 11 8 1 2 1 7
	Chaoboridae Stratiomydae Coléoptère Psephenidae Eubria Hydrophilidae Anacaena Hydroscaphidae Hydroscapha Curculionidae Hétéroptère Geridae	19	3	4 4		2			3					9	2		1	2				36 11 8 1 2 1 7
	Chaoboridae Stratiomydae Coléoptère Psephenidae Eubria Hydrophilidae Anacaena Hydroscaphidae Hydroscapha Curculionidae Hétéroptère Geridae Microvellia	19	3	4 4	1	4			3					9	2		1	2		1	1	36 11 8 1 2 1 7
	Chaoboridae Stratiomydae Coléoptère Psephenidae Eubria Hydrophilidae Anacaena Hydroscaphidae Hydroscapha Curculionidae Hétéroptère Geridae Microvellia Mégaloptère	19	3	4 4		2			3					9	2		1	2		1	1	36 11 8 1 2 1 7
	Chaoboridae Stratiomydae Coléoptère Psephenidae Eubria Hydrophilidae Anacaena Hydroscaphidae Hydroscapha Curculionidae Hétéroptère Geridae Microvellia	19	3	4 4		2			3					9	2		1	2		1	1	36 11 8 1 2 1 7
	Chaoboridae Stratiomydae Coléoptère Psephenidae Eubria Hydrophilidae Anacaena Hydroscaphidae Hydroscapha Curculionidae Hétéroptère Geridae Microvellia Mégaloptère	19	3	4 4		2			3					9	2		1	2		1	1	36 11 8 1 2 1 7
	Chaoboridae Stratiomydae Coléoptère Psephenidae Eubria Hydrophilidae Anacaena Hydroscaphidae Hydroscapha Curculionidae Hétéroptère Geridae Microvellia Mégaloptère Sialidae	19	3	4 4		2			3					9	2	2	1	2			1	36 11 8 1 2 1 7
	Chaoboridae Stratiomydae Coléoptère Psephenidae Eubria Hydrophilidae Anacaena Hydroscaphidae Hydroscapha Curculionidae Hétéroptère Geridae Microvellia Mégaloptère Sialidae Sialis Astacidae "pieds blancs"		1	1	1	1	2	1		2	0	17	1			1		2		1 1		36 11 8 1 2 1 7 1 5
	Chaoboridae Stratiomydae Coléoptère Psephenidae Eubria Hydrophilidae Anacaena Hydroscaphidae Hydroscapha Curculionidae Hétéroptère Geridae Microvellia Mégaloptère Sialidae Sialis Astacidae "pieds blancs" Abondance relative	150	1 53	1 1 61	1 68	1 1 50	119	1 84	30	79	0	17	70	175	104	1 123	18	2 2 1 41	22	1 1 61	59	36 11 8 1 2 1 7 1 5 2 1 1384
	Chaoboridae Stratiomydae Coléoptère Psephenidae Eubria Hydrophilidae Anacaena Hydroscaphidae Hydroscapha Curculionidae Hétéroptère Geridae Microvellia Mégaloptère Sialidae Sialis Astacidae "pieds blancs"		1	1	1	1	2	1		2	0 0,0	17 1,2	1			1		2		1 1		36 11 8 1 2 1 7 1 5

Prélèvements IBGN

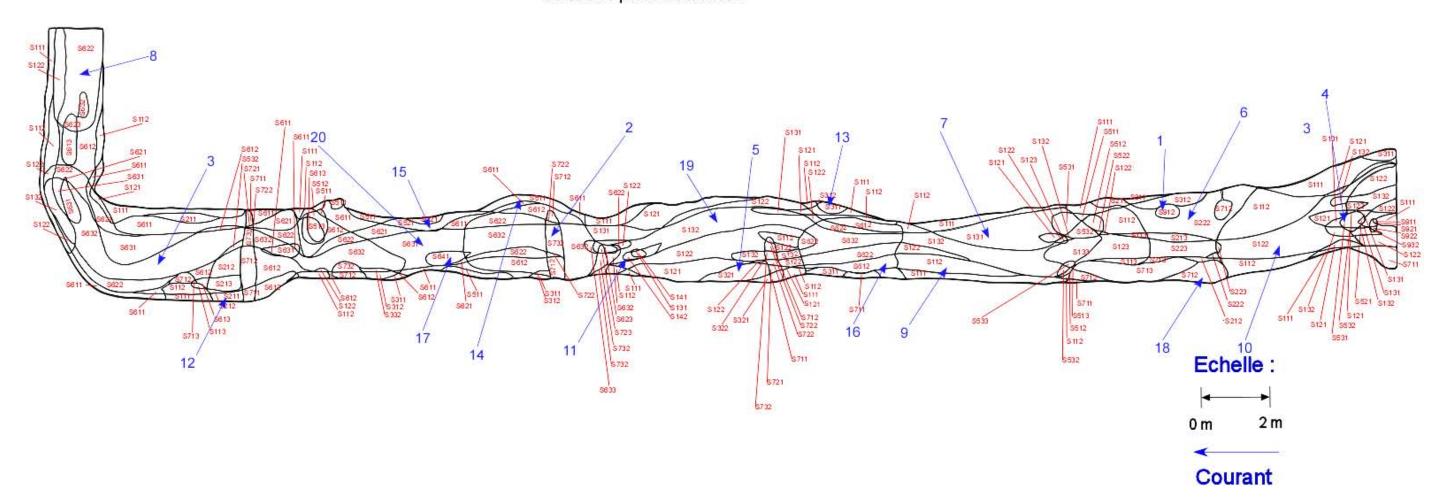
Cartographie des mosaïques d'habitat aquatique de Lagnat, selon la logique du MAG 20

Carte des pôles d'attraction

Echelle : 0 1m sens du courant

Pôles d'attraction (substrat, vitesse, hauteur)

Lagnat


Cours d'eau : Lagnat Date : 10/06/2004

	n°échantillon	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	Total
	code pôle	S722	S621 3,85	S521 3,2	S322 2,61	S131 1,33	S312 22,38	S111 13,17	S511 5,76	S121 5,4	S611 5,65	S631 0,33	S712 2,89	S112	S311 15,33	S512 4,56	S622	S711 0,89			S522 2,34	97,42
GI	% de recouvrement Taxon	0,35	3,65	3,2	2,61	1,33	22,36	13,17	3,76	3,4	5,65	0,33	2,09	2,28	15,33	4,56	2,3	0,69	0,9	1,9	2,34	97,42
9																						
8	Odontoceridae											_										
	Odontocerum Capniidae											2										2
	Capnia	2																				2
	Philopotamidae																					
	Wormaldia 								1	<u> </u>		1										2
	Leuctridae Leuctra		2	8	3		1		7		15	9	1		1	5	4	1	1		18	76
7	Glossossomatidae			0	<u> </u>		'				10	<u> </u>	'			3		'	'		10	70
/	Glossossoma												1									1
	Leptophlebiidae																					
	Habrophlebia Nemouridae			2								1						2	2		1	8
6	Nemoura											4										4
0	Sericostomatidae																					
	Sericostoma															1						1
5	Heptageniidae Ecdyonurus		1									3										4
	Polycentropodiade		<u> </u>																			
4	Plectrocnemia										2			1								3
	Neuriclipsis		1			1																2
3	Limnephilidae Potamophylax	42		1	5				1			8	107		4		5	13	2		10	198
	Gammaridae	400	27	60	20	15	2	10	92	21	92	96	550	8	20	50	30	100	80	24	80	1777
	Baetidae																					
	Baetis		6	28	8	50		68	4	84		7		4	1	5	5			5		275
2	Centroptilum Mollusques				1	4	2															7
	Hygrobiidae																					
	Bythiospermum	1																				1
	Physidae																					
	Aplexa hypnorum Oligochètes		4			8				1		1			1				1			2 14
1	Achètes		•			J																
'	Epobdella												1								1	2
	Chironomidae	10	11	30	15	25	30	20	9	18	28	30	20	10	40	20	12	50	20	3	20	421
	Nemathelminthes Nematodes					4					17											21
	Diptère																					
	Simulidae		4			19	2	3		1					1		1					31
	Chaoboridae Ceratopogonidae							1			1		1		1			1		2		2 6
	Stratiomydae		1					<u>'</u>					<u>'</u>		'			<u>'</u>				1
	Tabanidae														1							1
	Coléoptère																					
	Chrysomelidae Macroplea		1							-												1
	Psephenidae		_ '				<u> </u>			<u> </u>												
	Eubria				1																	1
	Heloploridae									-												
	Helophorus Dytiscidae									 								1				1
	Dyticus											1										1
	Curculionidae												1									1
	Odonates				4					 												
	Cordulegasteridae Hétéroptère		1		1					 											1	3
	Geridae																	2				2
	Trichoptère									<u> </u>												
	Ecnomidae Ecnomus									1												1
	Psychomidae																					
	Dives																					1
	Abondance relative	455	59	129	54	126	37	102	114	126	155	163	682	23	71	81	57	170	106	34	131	2876
	Abondance relative % Variété taxonomique	15,8 5	2,1 11	4,5 6	1,9 8	4,4 8	1,3 5	3,5 5	4,0 6	4,4 6	5,4 6	5,7 12	23,7 8	0,8 4	2,5 10	2,8 5	2,0 6	5,9 8	3,7 6	1,2 4	4,6 7	100 34
	Variété relative	14,7	32,4	17,6	23,5	23,5	14,7	14,7	17,6	17,6	17,6	35,3	23,5	11,8	29,4	14,7	17,6	23,5	17,6	11,8	20,6	100
	<u> </u>																					

Prélèvements IBGN

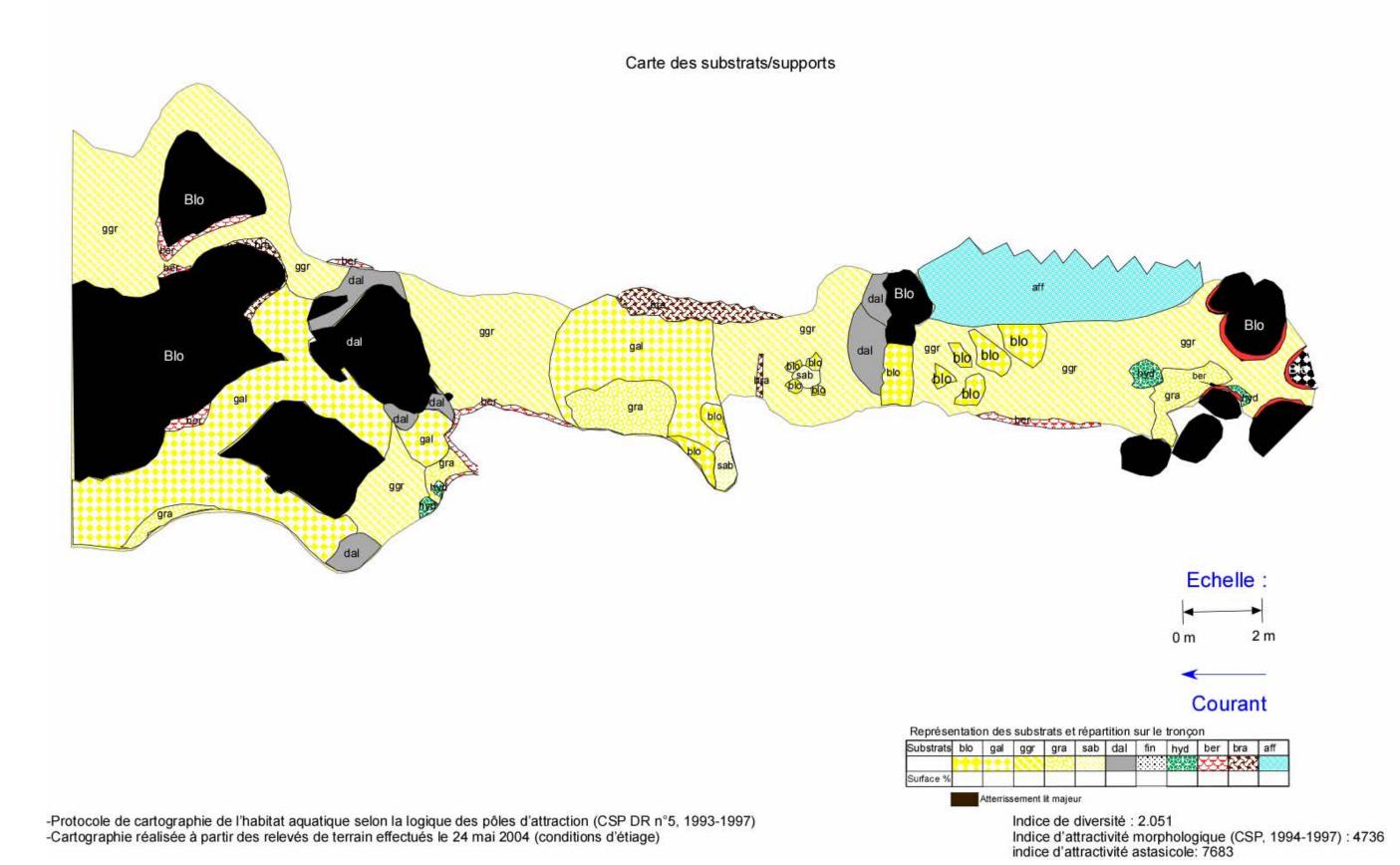
Cartographie des mosaïques d'habitat aquatique de Coppy, selon la logique du MAG 20

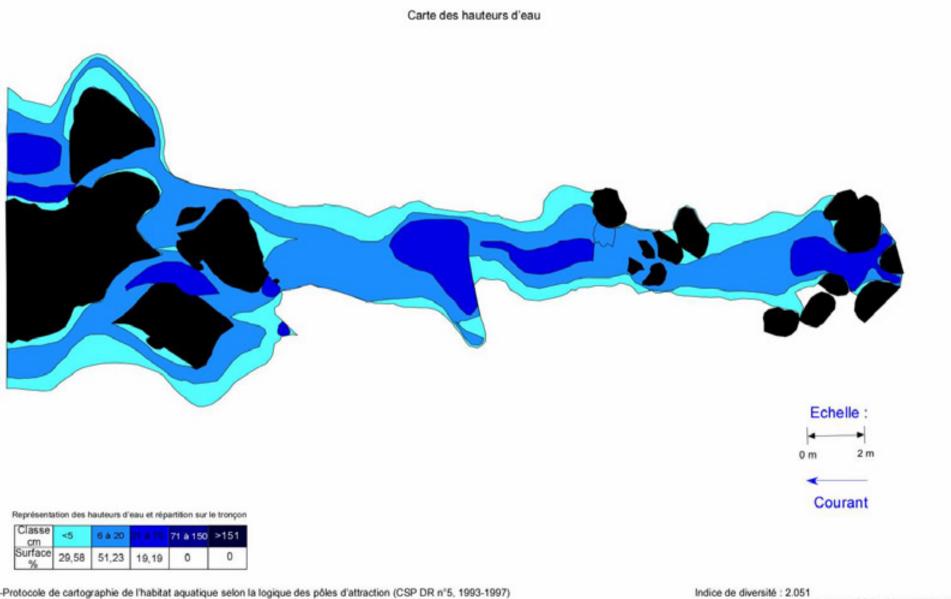
Carte des pôles d'attraction

Pôles d'attraction (substrat, vitesse, hauteur)

Coppy

Cours d'eau : Coppy
Date : 19/07/2004


								-		•	40	44	40	42	44	45	46	47	18	40	20	Tatal
	n°échantillon code pôle	1 5012	2	3 S632	4 S531	5 S321	6 S222	7 S131	8 S622	9 S112	10	11 S142	12	13 S311	14	15 S521	16 S612	17 S641		19 S132	20	Total
	% de recouvrement	S912 0,25	\$732 1,04	11,46	0,15	0,20		3,84		8,19	\$122 10,13	0,19		1,20	1,39	1,07	5,73	0,41	S712 2,62	7,56	4,20	71,44
GI	Taxon	0,25	1,04	11,40	0,13	0,20	2,00	3,04	0,04	0,19	10,13	0,19	1,09	1,20	1,39	1,07	3,73	0,41	2,02	7,50	4,20	71,44
9	Perlodidae																					0
8	Odontoceridae																					- 0
	Odontocerum						1															1
7	Cuomocrum						'															•
6																						
5																						
_	Polycentropodiade																					
4	Plectrocnemia												1									1
	Limnephilidae																					
_	Potamophylax						1						2	1	4		1					9
3	Anabolia						•		1				_				·					1
	Halesus												2		1							3
	Gammaridae	60	37	60	17	8	18		43			11	66	28	47	21		7	77	2	23	525
	Baetidae	- 55					.,		.,_				- 55							_		520
	Baetis		6	5	37		1	34		19	110				13	11	4	17		24	21	302
	Elmidae							1														
2	Esolus		5																			5
	Potamophilus																		3			3
	Mollusques																					
	Lymneidae																					
	Lymnea		2	1										1		1						5
4	Oligochètes	5		7			58		112					1	36	40	3	1			17	280
1	Chironomidae	67	676	220	48	250	62	5	43	17	24	2	24	32	25	70	64	9	96	3	42	1779
	Hydracariens		1																			1
	Lépidoptères				1								1									2
	Diptère																					
	Limoniidae		2	1			1		1									1				6
	Empididae									1			1	1								3
	Tipulidae	2	4									1				1			2	1		11
	Dixidae		1								1											2
	Simulidae	2	3		2			27		7	22	29	7						3	7	3	112
	Chaoboridae			2	3		7							1								13
Autres taxons	Ceratopogonidae	8												2		2		1				13
Aunes Idaulis	Stratiomydae	2	2		1					1												6
	Psychodidae	72																				72
	Coléoptère																					
	Hydrophilidae																					
	Chaetarthria												1									1
	Noteridae																					
	Noterus								1													1
	Curculionidae		1																			1
	Hétéroptère																					
	Microvellia		1			1																2
	Bryozoaire		2		1																	1
	Abondance relative	218	743	296	110	259	149	66	201	45	157	43	105	67	126	146	72	36	181	37	106	3160
	Abondance relative %	6,9	23,5	9,4	3,5	8,2	4,7	2,1	6,4	1,4	5,0	1,4	3,3	2,1	4,0	4,6	2,3	1,1	5,7	1,2	3,4	100
	Variété taxonomique	8	14	7	7	3	8	3	6	5	4	4	9	8	6	7	4	6	5	5	5	27
	Variété relative	29,6	51,9	25,9	25,9	11,1	29,6	11,1	22,2	18,5	14,8	14,8	33,3	29,6	22,2	25,9	14,8	22,2	18,5	18,5	18,5	100


Prélèvements IBGN

Annexes n°3

Représentation cartographique de l'habitat des stations.

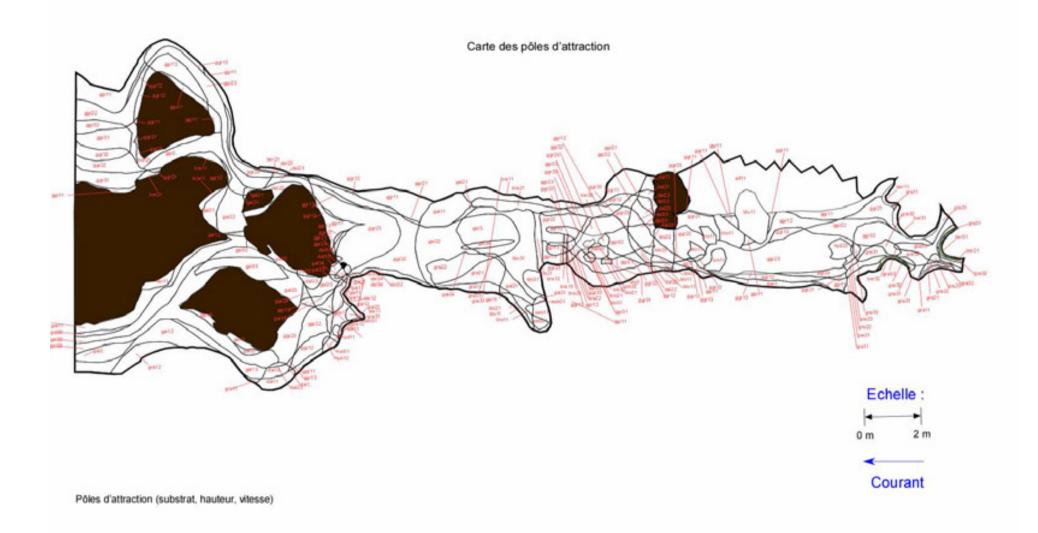
a.Le creux de Nantisseb.Le creux de Berluzc.Le nant des Frassesd.Le ruisseau de Lagnate.Le ruisseau de Coppy

-Protocole de cartographie de l'habitat aquatique selon la logique des pôles d'attraction (CSP DR n°5, 1993-1997)
 -Cartographie réalisée à partir des relevés de terrain effectués le 24 mai 2004 (conditions d'étiage)

Indice d'attractivité morphologique (CSP, 1994-1997) : 4736 indice d'attractivité astasicole: 7683

Cartographie des mosaïques d'habitat aquatique de nantisse, selon la logique des pôles d'attraction (méthode CSP DR 5, TELEOS) : Carte des vitesses de courant Echelle: Courant

Représentation des vitesses et répartition sur le tronçon

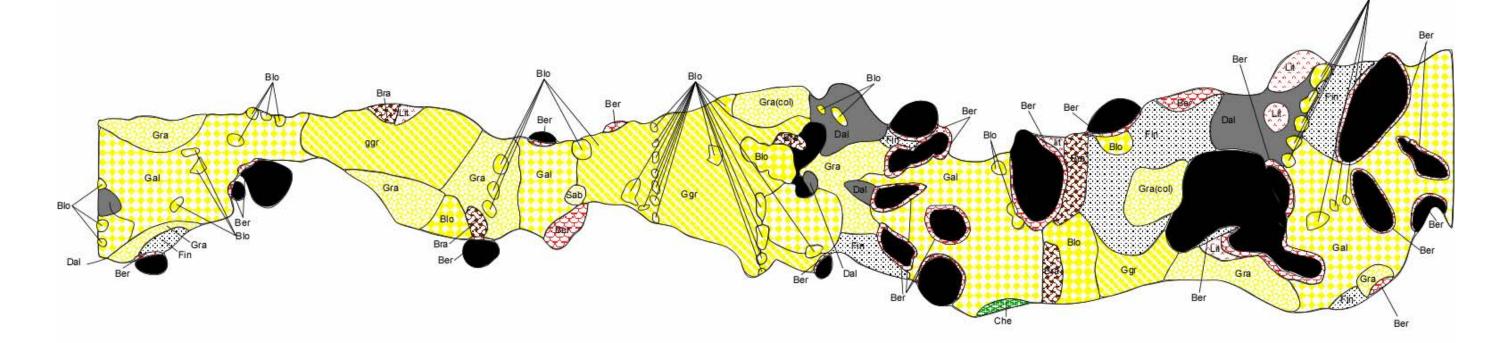

9.94

cm/s Surface

37.33

-Protocole de cartographie de l'habitat aquatique selon la logique des pôles d'attraction (CSP DR n°5, 1993-1997)
 -Cartographie réalisée à partir des relevés de terrain effectués le 24 mai 2004 (conditions d'étiage)

Indice de diversité : 2.051 Indice d'attractivité morphologique (CSP, 1994-1997) : 4736 indice d'attractivité astasicole: 7683


-Protocole de cartographie de l'habitat aquatique selon la logique des pôles d'attraction (CSP DR n°5, 1993-1997) -Cartographie réalisée à partir des relevés de terrain effectués le 24 mai 2004 (conditions d'étiage)

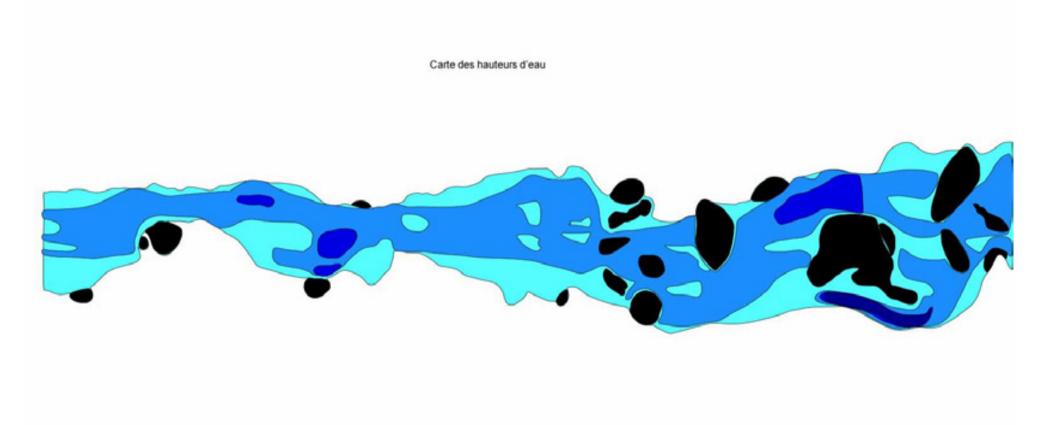
Indice de diversité : 2.051 Indice d'attractivité morphologique (CSP, 1994-1997) : 4736 indice d'attractivité astasicole: 7683

TA 1	r	4 •	
	an	T10	422
Τ.	ан	·LL	\mathbf{J}

	Nanusse	
pôle d'attraction	surface	%
ggr11	9,298	8,19
ggr12	4,312	3,80
ggr13	2,612	2,30
ggr21	5,362	4,72
ggr22	10,459	9,21
ggr23	13,828	12,17
ggr24	0,024	0,02
ggr31	1,428	1,26
ggr32	3,373	2,97
ggr33	0,069	0,06
	50,765	44,69
ggr	50,765	44,09
aro11	3,143	2,77
gra11		
gra12	1,023	0,90
gra21	1,537	1,35
gra22	1,498	1,32
gra23	0,172	0,15
gra31	1,026	0,90
gra32	0,782	0,69
gra33	0,9	0,79
gra	10,081	8,88
gal11	2,022	1,78
gal12	2,528	2,23
gal13	1,244	1,10
gal21	1,26	1,11
gal22	7,13	6,28
gal23	4,87	4,29
gal24	0,025	0,02
gal31	2,454	2,16
gal32	2,717	2,39
gal33	1,534	1,35
gal34	0,323	0,28
gal	26,107	22,98
9 41	20,107	22,00
dal11	0,67	0,59
dal12	0,505	0,44
dal13		
	0,292	0,26
dal21	0,198	0,17
dal22	1,396	1,23
dal23	0,94	0,83
dal24	0,056	0,05
dal32	0,111	0,10
dal33	0,707	0,62
dal34	0,094	0,08
dal	4,969	4,37
ber11	0,445	0,39
ber12	0,111	0,10
ber13	0,638	0,56
ber21	0,327	0,29
ber22	0,347	0,31
ber31	0,198	0,17
ber32	0,092	0,08
ber	2,158	1,90
blo11	3,584	3,16
blo21	0,435	0,38
blo22	0,43	0,38
blo23	0,328	0,29
blo31	0,465	0,41
blo32	0,24	0,21
blo	5,482	4,83
NIO NIO	0,702	7,00
hyd11	0,205	0,18
hyd12	0,205	0,18
-		
hyd23	0,423	0,37
hyd	0,668	0,59
20h44	0.202	0.22
sab11	0,368	0,32
sab21	0,162	0,14
sab31	0,23	0,20
sab	0,76	0,67
	1	
bra11	1,388	1,22
bra13	0,023	0,02
bra21	0,499	0,44
bra22	0,031	0,03
bra23	0,071	0,06
bra	2,012	1,77
aff	10,586	9,32
total	113,588	100,00

Carte des substrats/supports

Représentation	doc	embetrate a	at rénactition	m eur	le troncon


Substrats	blo	gal	ggr	gra	sab	lit	ber	bra	chv	fin	dal
	100	600	//		(800)	0,000	交交	555			
Surface %	1,70	76,33	10,25	3,99	0,06	0,19	0,59	4,27	2,62		

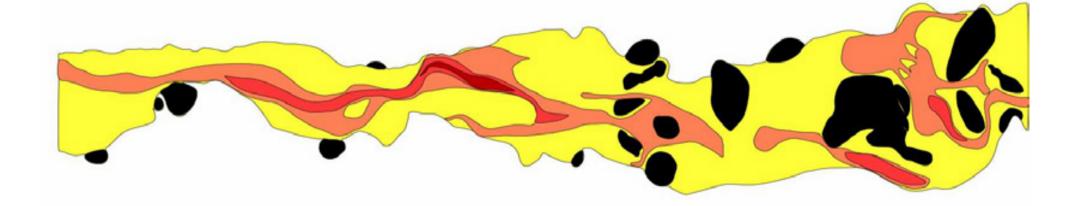
Echelle: 1m sens du courant

-Protocole de cartographie de l'habitat aquatique selon la logique des pôles d'attraction (CSP DR n°5, 1993-1997) -Cartographie réalisée à partir des relevés de terrain effectués le 25 mai 2004 (conditions d'étiage)


Indice de diversité: 1,469

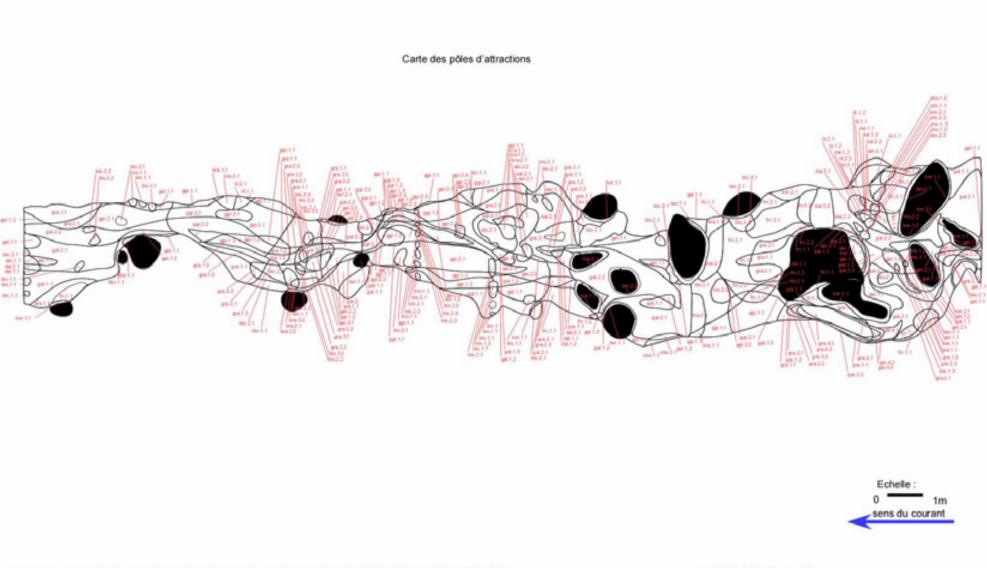
Indice d'attractivité morphologique (CSP, 1994-1997) : 5936 indice d'attractivité astasicole: 9091

Représentation des h	laufeurs d'eau et	t répartition su	r le tronçon
----------------------	-------------------	------------------	--------------


Classe cm	<5	6 à 20	21.4.70	71 à 150	>151
Surface %	29,58	51,23	19,19	0	0

-Protocole de cartographie de l'habitat aquatique selon la logique des pôles d'attraction (CSP DR n°5, 1993-1997)
 -Cartographie réalisée à partir des relevés de terrain effectués le 25 mai 2004 (conditions d'étiage)

Indice de diversité: 1,469 Indice d'attractivité morphologique (CSP, 1994-1997):5936 indice d'attractivité astasicole: 9091

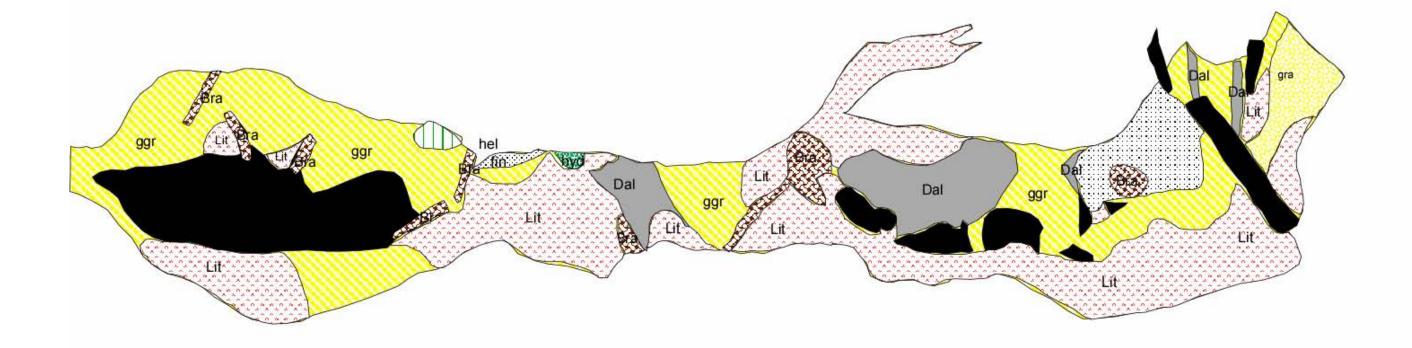

Représentation des vitesses et répartition sur le tronçon

Classe cm/s	<10	11 à 40	41 à 80	81 à 150	
Surface %	37,33	51,54	9,94	1,19	0

Protocole de cartographie de l'habitat aquatique selon la logique des pôles d'attraction (CSP DR n°5, 1993-1997)
 Cartographie réalisée à partir des relevés de terrain effectués le 25 mai 2004 (conditions d'étiage)

Indice de diversité: 1,469 Indice d'attractivité morphologique (CSP, 1994-1997):5936 indice d'attractivité astasicole: 9091

⁻Protocole de cartographie de l'habitat aquatique selon la logique des pôles d'attraction (CSP DR n°5, 1993-1997) -Cartographie réalisée à partir des relevés de terrain effectués le 25 mai 2004 (conditions d'étiage)


Indice de diversité: 1,469 Indice d'attractivité morphologique (CSP, 1994-1997) 5936 indice d'attractivité astasicole:9091

Berluz

pôle d'attraction		
	surface	%
ggr11	3,6	5,3
ggr12	1,9	2,8
ggr13	0,6	0,8
ggr14	0,1	0,1
ggr21	4,2	6,1
ggr22	2,3	3,3
ggr23	0,6	0,9
ggr24	0,5	0,7
ggr31	0,3	0,4
ggr32	0,0	0,0
ggr33	0,0	0,0
ggr	14,1	20,4
	,	•
	2.0	
gra11	3,9	5,7
gra12	0,7	1,0
gra13	0,4	0,6
gra21	2,7	3,9
gra22	0,8	1,1
gra23	0,2	0,3
gra31	0,1	0,2
gra32	0,3	0,4
gra33	0,2	0,2
gra42	0,1	0,1
gra43	0,7	1,0
		14,6
gra	10,0	14,0
gal11	6,9	10,0
gal12	1,5	2,1
i		
gal13	0,2	0,4
gal21	8,8	12,8
gal22	4,2	6,1
gal23	0,4	0,6
gal24	0,0	0,0
gal31	0,1	0,1
gal32	0,0	0,1
gal33		
<u> </u>	0,0	0,1
gal34	0,0	0,0
gal41	0,2	0,3
gal42	0,1	0,1
gal43		
	0,0	0,1
gal	22,6	32,8
dal11	0,8	1,1
1		
dal12	0,1	0,1
dal13	0,0	0,0
dal21	1,4	2,0
dal22	0,9	1,2
dal23	0,0	0,0
dal24	0,0	0,0
dal31	0,0	0,0
dal32	0,6	0,9
 		
dal33	0,0	0,0
dal34	0,0	0,0
dal	3,7	5,4
	·	
hor44	2.4	2.0
ber11	2,1	3,0
ber12	0,0	0,0
ber13	0,0	0,0
ber21	1,2	1,7
ber22	0,2	0,2
ber31	0,0	0,0
ber32	0,0	0,0
ber	3,4	5,0
201	٠,٠	0,0
blo11	1,9	2,8
blo12	0,2	0,2
blo13	0,0	0,1
blo21	1,9	2,7
blo22	1,3	1,9
blo23	0,0	0,0
blo24	0,0	0,0
UIUZ4		
	Λ1	0,1
blo31	0,1	
	0,1	0,1
blo31 blo32	0,0	0,1
blo31		

che22 che23 che31	0,1 0,0 0,0	0,1 0,0 0,0
che21	0,0	0,0
che13	0,0	0,0
che11 che12	0,1	0,1 0,0
fin	6,4	9,3
fin32	0,3	0,5
fin31	0,9	1,3
fin23	0,0	0,0
fin22	0,2	0,3
fin21	2,5	3,7
fin13	0,0	0,0
fin12	0,4	0,6
fin11	2,0	2,9
lit	1,1	1,5
lit31	0,0	0,0
lit23	0,0	0,0
lit22	0,2	0,3
lit21	0,2	0,2
lit13	0,0	0,0
lit12	0,3	0,5
lit11	0,4	0,5
bra	1,9	2,7
bra41	0,0	0,0
bra33	0,0	0,0
bra32	0,0	0,1
bra31	0,0	0,0
bra23	0,0	0,0
bra22	0,1	0,2
bra21	1,3	1,8
bra13	0,0	0,0
bra11 bra12	0,5 0,0	0,7

Carte des substrats/supports

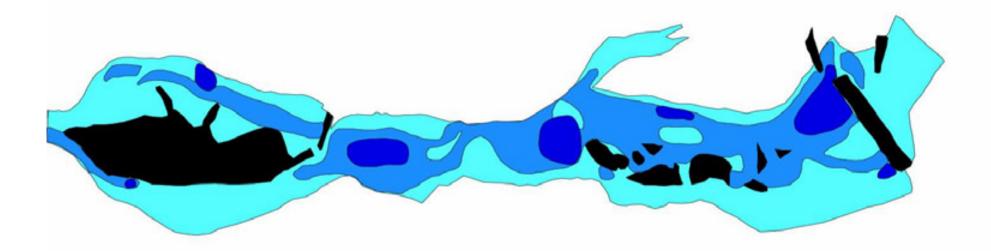
0 m 1 m Courant

Echelle:

Représentation des substrats et répartition sur le tronçon

Substrats	blo	gal	ggr	gra	sab	ber	bra	hel	fin	dal	lit	hyd
	φφą	588	\sim	CASE.		\$\$				Š	~~~	
Surface %						1000	0.11		A CARACCAN		DILL TO S	325 TO 111

Attention icile substrat est un peu spécial. En effet le substrat considéré comme galet gravier est en fait en majorité de la litière calcifiée et recouverte de tuff.

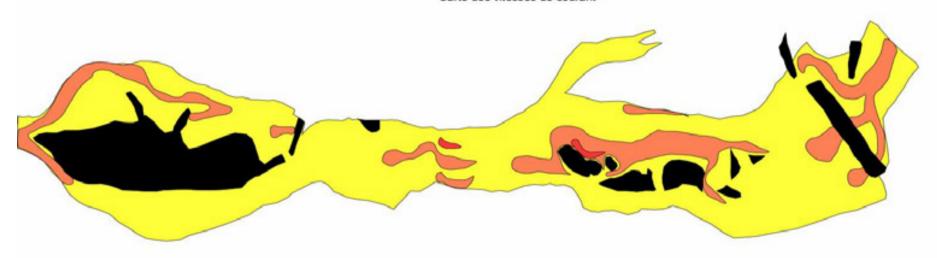

-Protocole de cartographie de l'habitat aquatique selon la logique des pôles d'attraction (CSP DR n°5, 1993-1997) -Cartographie réalisée à partir des relevés de terrain effectués le 24 mai 2004 (conditions d'étiage)

Indice de diversité: 1.109

Indice d'attractivité morphologique (CSP, 1994-1997) : 1273

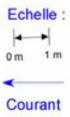
indice d'attractivité astasicole: 3704

Carte des hauteurs d'eau


Représentation des hauteurs d'eau et répartition sur le tronçon

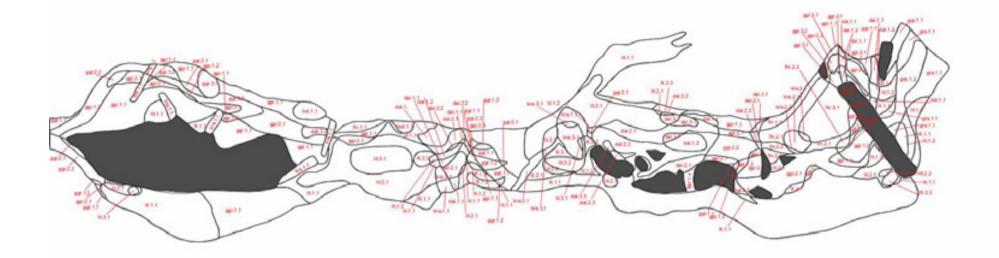
Classe	<5	6 à 20	21 6 10	71 à 150	>151
Surface %	29,58	51,23	19,19	0	0

-Protocole de cartographie de l'habitat aquatique selon la logique des pôles d'attraction (CSP DR n°5, 1993-1997) -Cartographie réalisée à partir des relevés de terrain effectués le 24 mai 2004 (conditions d'étiage)


Indice de diversité: 1.109 Indice d'attractivité morphologique (CSP, 1994-1997): 1273 indice d'attractivité astasicole: 3704

Carte des vitesses de courant

Représentation des vitesses et répartition sur le tronçon


Classe cm/s	<10	11 à 40		81 a 150	>151
Surface %	37,33	51,54	9,94	1,19	0

Indice de diversité: 1.109 Indice d'attractivité morphologique (CSP, 1994-1997): 1273 indice d'attractivité astasicole: 3704

⁻Protocole de cartographie de l'habitat aquatique selon la logique des pôles d'attraction (CSP DR n°5, 1993-1997) -Cartographie réalisée à partir des relevés de terrain effectués le 24 mai 2004 (conditions d'étiage)

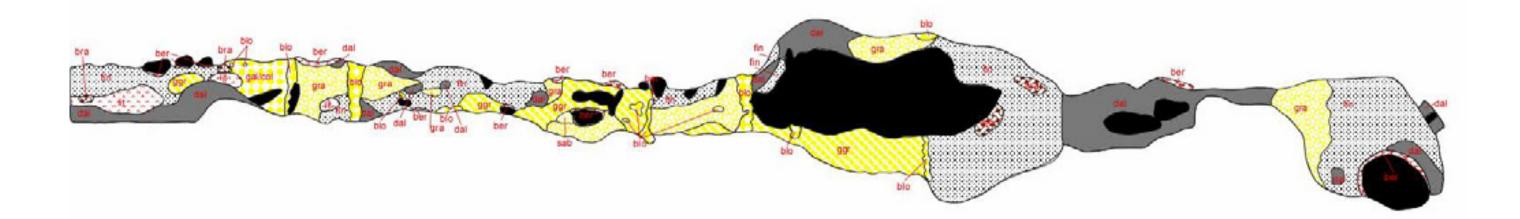
Carte des pôles d'attraction

Pôles d'attraction (substrat, hauteur, vitesse)

Indice de diversité: 1.109

Indice d'attractivité morphologique (CSP, 1994-1997) : 1273

indice d'attractivité astasicole: 3704


Echelle: Courant

⁻Protocole de cartographie de l'habitat aquatique selon la logique des pôles d'attraction (CSP DR n°5, 1993-1997) -Cartographie réalisée à partir des relevés de terrain effectués le 24 mai 2004 (conditions d'étiage)

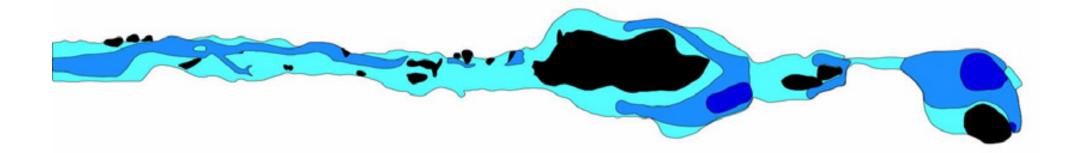
1	rasse	

pôle d'attraction	surface	%		
ggr11	11,444	18,03		
ggr12	2,083	3,28		
ggr13	0,06	0,09		
ggr21	4,593	7,24		
ggr22	2,865	4,51		
ggr23	0,041	0,06		
ggr31	0,56	0,88		
ggr32	0,006	0,01		
ggr	21,652	34,12		
lit11	17,162	27,04		
lit12	1,052	1,66		
lit21	6,578	10,36		
lit22				
lit31	0,435 1,584	0,69 2,50		
		0,76		
lit32 lit	0,48 27,291	43,00		
The state of the s	21,231	+3,00		
gra11	1,31	2,06		
gra12	1,004	1,58		
gra	2,314	3,65		
dal11	1,104	1,74		
dal12	0,709	1,12		
dal21	2,039	3,21		
dal22	1,667	2,63		
dal23	0,065	0,10		
dal31	0,152	0,24		
dal32	0,017	0,03		
dal33	0,1	0,16		
dal	5,853	9,22		
fin11	0,74	1,17		
fin21	1,288	2,03		
fin22	0,176	0,28		
fin31	1,497	2,36		
fin	3,701	5,83		
1111	3,701	3,63		
hyd11	0,148	0,23		
hyd	0,148	0,23		
hel11	0,361	0,57		
hel	0,361	0,57		
bra11	1,357	2,14		
bra12	0,059	0,09		
bra21	0,059	1,04		
bra22	0,034	0,05		
bra31	0,034	0,05		
bra	2,144	3,38		
νια	۷, ۱۳۳	3,30		
total	63,464	100,00		

Carte des substrats/supports

Représentation des substrats et répartition sur le tronçon

Substrats	blo	gal	ggr	gra	sab	lit.	ber	bra	chv	fin.	dal
		800			2000	0.00	*	QQ,			
Surface %	1.70	76,33	10,25	3,99	0.06	0,19	0.59	4.27	2,62		


Atterrissement It majeur

Echelle:

-Protocole de cartographie de l'habitat aquatique selon la logique des pôles d'attraction (CSP DR n°5, 1993-1997) -Cartographie réalisée à partir des relevés de terrain effectués le 25 mai 2004 (conditions d'étiage)

Indice de diversité : 1.274 Indice d'attractivité morphologique (CSP, 1994-1997) : 137ç indice d'attractivité astasicole:

Carte des hauteurs d'eau

Représentation des hauteurs d'eau et répartition sur le tronçon

-					
Classe cm Surface %	<5	6 à 20	21 a 70	71 à 150	>151
Surface %	29,58	51,23	19,19	0	0

Echelle : 0 1m sens du courant

-Protocole de cartographie de l'habitat aquatique selon la logique des pôles d'attraction (CSP DR n°5, 1993-1997)
 -Cartographie réalisée à partir des relevés de terrain effectués le 25 mai 2004 (conditions d'étiage)

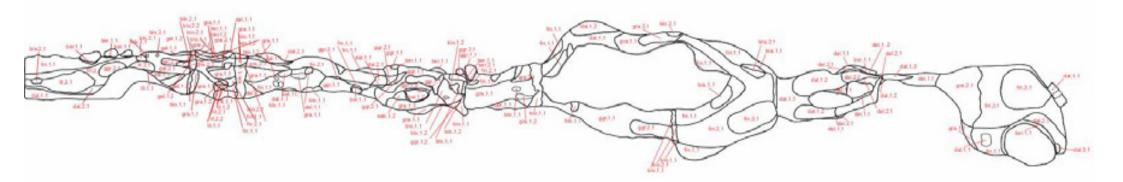
Indice de diversité : 1.274 Indice d'attractivité morphologique (CSP, 1994-1997) : 1379 indice d'attractivité astasicole: 2203,1

Carte des vitesses de courant

Représentation des vitesses et répartition sur le tronçon

Classe cm/s	<10	11 à 40		81 à 150	>151
Surface %	37,33	51,54	9,94	1,19	0

Echelle


-Protocole de cartographie de l'habitat aquatique selon la logique des pôles d'attraction (CSP DR n°5, 1993-1997) -Cartographie réalisée à partir des relevés de terrain effectués le 25 mai 2004 (conditions d'étiage)

Indice de diversité: 1.274

Indice d'attractivité morphologique (CSP, 1994-1997) : 137

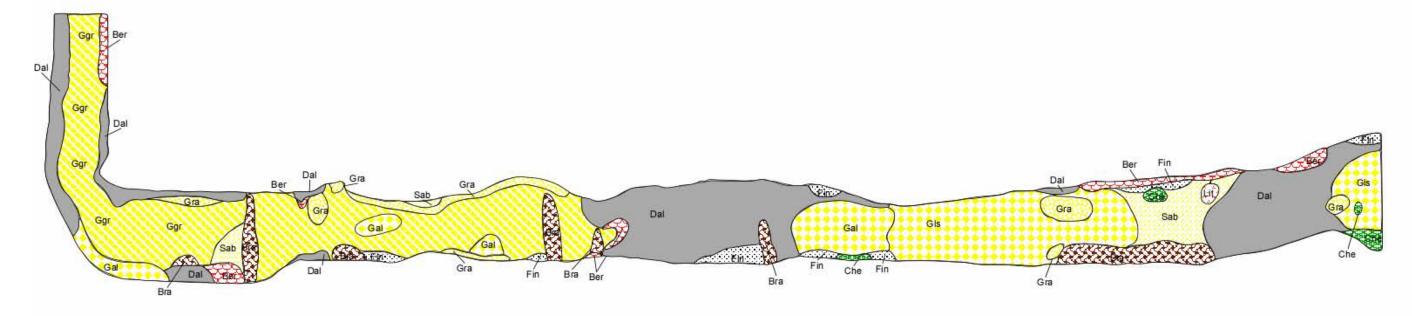
indice d'attractivité astasicole: 2203,1

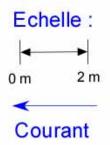
Carte des pôles d'attraction

Echelle : 0 1m sens du courant

Pôles d'attraction (substrat, hauteur, vitesse)

-Protocole de cartographie de l'habitat aquatique selon la logique des pôles d'attraction (CSP DR n°5, 1993-1997)
 -Cartographie réalisée à partir des relevés de terrain effectués le 25 mai 2004 (conditions d'étiage)


Indice de diversité : 1.274 Indice d'attractivité morphologique (CSP, 1994-1997) : 1379 indice d'attractivité astasicole: 2203,1

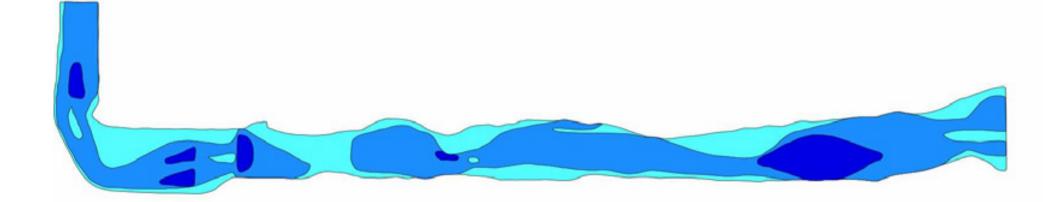

Lagnat

mâle diettreetien		0/
pôle d'attraction	surface	%
ggr11	1,9	8,2
ggr12	0,3	1,1
ggr13	0,0	0,0
ggr21	0,5	2,2
ggr22	0,0	0,0
ggr23	0,0	0,0
ggr24	0,0	0,0
ggr31	0,0	0,0
ggr32	0,0	0,0
ggr33	0,0	0,0
ggr	2,7	11,5
ano 4.4	2.0	11.1
gra11	2,6	11,1
gra12	0,3	1,3
gra21	1,3	5,6
gra22	0,2	0,8
gra23	0,0	0,0
gra31	0,0	0,0
gra32	0,0	0,0
gra33	0,0	0,0
gra	4,5	18,7
2014.4	0.0	0,0
gal11	0,2	0,9
gal12	0,0	0,1
gal13	0,0	0,0
gal21	0,3	1,3
gal22	0,1	0,2
gal23	0,0	0,0
gal24	0,0	0,0
gal31	0,0	0,0
gal32	0,0	0,0
gal33	0,0	0,0
gal34	0,0	0,0
gal	0,6	2,5
1-144	0.5	40.0
dal11	2,5	10,6
dal12	1,0	4,2
dal13	0,1	0,3
dal21	0,6	2,4
dal22	0,4	1,5
dal23	0,0	0,0
dal24	0,0	0,0
dal31	0,0	0,1
dal32	0,0	0,0
dal33	0,0	0,0
dal34	0,0	0,0
dal	4,6	19,2
ber11	0,3	1,4
ber12	0,0	0,1
ber13	0,0	0,0
ber21	0,0	0,0
ber22	0,0	0,0
ber31	0,0	0,0
ber32	0,0	0,0
ber	0,4	1,6
blo11	0,9	3,7
hla40	0.0	0,1
blo12	0,0	
blo21	0,1	0,4
blo21 blo22	0,1 0,1	0,4 0,3
blo21 blo22 blo23	0,1 0,1 0,0	0,4 0,3 0,0
blo21 blo22 blo23 blo31	0,1 0,1 0,0 0,0	0,4 0,3 0,0 0,0
blo21 blo22 blo23	0,1 0,1 0,0	0,4 0,3 0,0

ai		
sab11	0,0	0,0
sab12	0,0	0,2
sab13	0,0	0,0
sab31	0,0	0,0
sab	0,0	0,2
bra11	0,2	0,7
bra12	0,0	0,0
bra13	0,0	0,0
bra21	0,1	0,5
bra22	0,0	0,0
bra23	0,0	0,0
bra	0,3	1,2
lit11	0,0	0,2
lit12	0,0	0,1
lit13	0,0	0,0
lit21	0,6	2,7
lit22	0,0	0,0
lit23	0,0	0,0
lit31	0,0	0,0
lit	0,7	2,9
fin11	3,4	14,3
fin12	0,0	0,0
fin13	0,0	0,0
fin21	4,2	17,6
fin22	0,0	0,0
fin23	0,0	0,0
fin31	1,3	5,6
fin	8,9	37,5
4-4-1	00.0	100.0
total	23,8	100,0

Carte des substrats/supports

Représentation des substrats et répartition sur le tronçon


Substrats	blo	gal	ggr	gra	sab	dal	fin	hyd	ber	bra	aff
	*	111		999	3600	1			***		
Surface %							20000000	1000000	WEISEN'S	0.00000000	

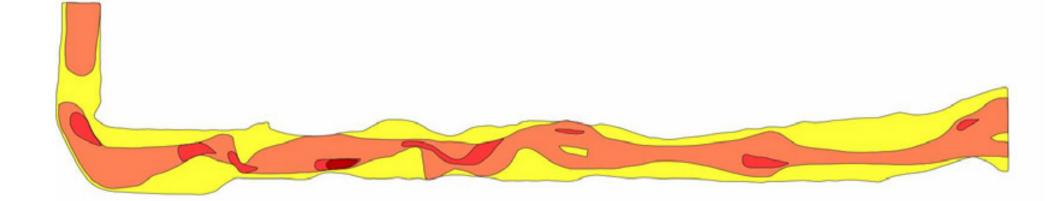
1997)

Indice de diversité : Indice d'attractivité morphologique (CSP, 1994-1997) : indice d'attractivité astasicole:

⁻Protocole de cartographie de l'habitat aquatique selon la logique des pôles d'attraction (CSP DR n°5, 1993-1997) -Cartographie réalisée à partir des relevés de terrain effectués le 7 juin 2004 (conditions d'étiage)

Représentation des hauteurs d'eau et répartition sur le tronçon

Classe	*0	6 à 20	21 & 70	71 à 150	>151
Surface %	29,58	51,23	19,19	0	0


-Protocole de cartographie de l'habitat aquatique selon la logique des pôles d'attraction (CSP DR n°5, 1993-1997)
 -Cartographie réalisée à partir des relevés de terrain effectués le 7 juin 2004 (conditions d'étiage)

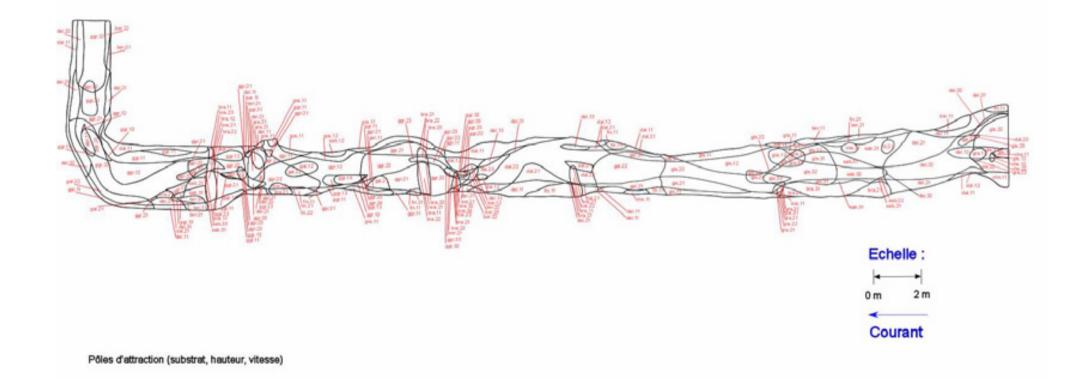
Indice de diversité : Indice d'attractivité morphologique (CSP, 1994-1997) : indice d'attractivité astasicole:

Echelle:

Courant

Carte des vitesses de courant

Représentation des vitesses et répartition sur le tronçon


Classe cm/s		11 à 40	41 à 80	81 6 150	>151
Surface %	37,33	51,54	9,94	1,19	0

-Protocole de cartographie de l'habitat aquatique selon la logique des pôles d'attraction (CSP DR n°5, 1993-1997)
 -Cartographie réalisée à partir des relevés de terrain effectués le 7 juin 2004 (conditions d'étiage)

Indice de diversité : Indice d'attractivité morphologique (CSP, 1994-1997) : indice d'attractivité astasicole:

Echelle:

Courant

-Protocole de cartographie de l'habitat aquatique selon la logique des pôles d'attraction (CSP DR n°5, 1993-1997) -Cartographie réalisée à partir des relevés de terrain effectués le 7 juin 2004 (conditions d'étiage) Indice de diversité :

Indice d'attractivité morphologique (CSP, 1994-1997) : indice d'attractivité astasicole:

Coppy

pôle d'attraction	surface	%
ggr11	1,0	4,4
	1,0	4,4
ggr12	0,2	
ggr13		0,8
ggr14	0,1	0,4
ggr21	1,2	5,2
ggr22	2,1	9,4
ggr23	0,3	1,3
ggr24	0,0	0,0
ggr31	0,2	1,1
ggr32	0,1	0,6
ggr33	0,1	0,5
ggr	6,3	28,2
gra11	0,3	1,5
gra12	0,3	1,2
gra13	0,0	0,0
gra21	0,1	0,2
gra22	0,1	0,2
gra23	0,0	0,0
gra31	0,0	0,0
gra32	0,0	0,2
gra33	0,0	0,0
gra42	0,0	0,0
gra43	0,0	0,0
gra	0,8	3,5
yı u	3,0	0,0
gal11	0,2	0,7
gal12	0,1	0,7
gal13	0,0	0,4
		1,7
gal21	0,4	
gal22	1,0	4,3
gal23	0,0	0,0
gal24	0,0	0,0
gal31	0,0	0,0
gal32	0,0	0,0
gal33	0,0	0,0
gal34	0,0	0,0
gal41	0,0	0,0
gal42	0,0	0,0
gal43	0,0	0,0
gal	1,6	7,1
dal11	1,8	7,8
dal12	0,4	1,7
dal13	0,1	0,5
dal21	1,4	6,4
dal22	2,5	10,9
dal23	0,4	1,8
dal24	0,0	0,0
dal31	0,0	0,0
dal32	0,0	0,0
dal33	0,0	0,0
dal34	0,0	0,0
dal	6,5	29,1
	,	<u> </u>
ber11	0,3	1,2
ber12	0,0	0,1
ber13	0,0	0,0
ber21	0,2	0,9
ber22	0,1	0,5
ber31	0,1	0,3
ber32	0,0	0,0
ber	0,7	3,0
NGI NGI	0,1	3,0
gls11	0,6	2,8
gls12	0,6	2,6
gls12	0,0	0,1
gls21	0,5	2,0
gls22	0,8	3,6
gls23	0,1	0,3
gls24	0,0	0,0
gls31	0,2	0,9
gls32	0.4	1,8
	0,4	
gls33 gls	0,4 0,1 3,2	0,3 14,4

	T	
sab11	0,0	0,0
sab12	0,0	0,2
sab13	0,0	0,0
sab21	0,5	2,4
sab22	0,0	0,0
sab23	0,0	0,0
sab31	0,3	1,4
sab32	0,2	1,0
sab33	0,0	0,1
sab34	0,0	0,0
sab	1,1	5,0
bra11	0,1	0,5
bra12	0,0	0,0
bra13	0,0	0,0
bra21	0,6	2,8
bra22	0,1	0,6
bra23	0,1	0,3
bra31	0,4	1,7
bra32	0,0	0,0
bra33	0,0	0,0
bra41	0,0	0,0
bra	1,3	5,9
	,-	-,-
lit11	0,0	0,0
lit12	0,0	0,0
lit13	0,0	0,0
lit21	0,1	0,3
lit22	0,0	0,0
lit23	0,0	0,0
lit31	0,0	0,0
lit	0,1	0,3
<u> </u>	-,	-,-
fin11	0,4	1,9
fin12	0,0	0,0
fin13	0,0	0,0
fin21	0,2	0,7
fin22	0,0	0,0
fin23	0,0	0,0
fin31	0,0	0,0
fin32	0,0	0,0
fin	0,6	2,6
	0,0	
che11	0,2	0,7
che12	0,0	0,0
che13	0,0	0,0
che21	0,1	0,3
che22	0,0	0,0
che23	0,0	0,0
che31	0,0	0,0
che	0,2	1,0
0110		.,0
total	22,5	200,0
- total	-L,U	200,0

Annexes nº4

Protocole de calcul du CB2 et de m

3.

Calcul de l'indice de capacité biogénique secondaire (cb2)

Les prélèvement du macrobenthos sont effectués selon le protocole de l'IBGN A partir de la liste faunistique obtenue, le calcul de l'indice cb2 est le suivant :

cb2 = In + Iv

le cb2 est une note/20

Chacun des deux indices In et Iv sont des notes/10

avec

Iv (indice de variété faunistique) = 0,22 * N
 N = nombre de taxons répertoriés appartenant à la liste des taxons utilisés pour le cb2

• In (indice nature de la faune) = 1,21 $\sum_{1}^{k} i_{max}$

Prevote la valeur > Ex: k= 10 - 2,5 - 3.

k = n/4 et n : nombre de taxons indicateurs (affectés d'un indice i de sensibilité) présents dans la liste faunistique avec une densité supérieure ou égale à trois individus.

 i_{max} : indice de sensibilité des taxons indicateurs les plus sensibles présents dans la liste faunisitique.

La principale différence de ce calcul par rapport à l'IBGN est que l'on considère ici un nombre plus important de taxons indicateurs (un seul dans l'IBGN, le groupe indicateur). Ce nombre est égal au quart du nombre de taxons indicateurs présents sur la station avec au moins trois individus.

De plus l'existence de deux indices différents (În et Iv) permettent d'illustrer de manière plus évidente la part respective de la qualité de l'habitat (en relation avec Iv) et de la qualité physico-chimique de l'eau (en relation avec In) dans l'indice global cb2.

Coefficient morphodynamique

4

 $m = \sqrt{H} + \sqrt{H'} + \sqrt{N}$ indice /20

N = n*n'

n = nombre de substrats inventoriés sur la station

n' = nombre de classe de vitesse inventoriées sur la station

H = code substrat*code vitesse de l'habitat dominant sur la station

H' = code substrat * code vitesse de l'habitats le plus favorable répertorié sur la station

Répertoire des 92 indicateurs classés selon i et par ordre alphabétique

Astacidae (except. A. Leptodactylus)

Beraeidae Chloroperlidae Perlodidae Thremmatidae

Brachycentridae

Capniidae

Goeridae

Oligoneuriidae

Perlidae

Philopotamidae

Siphlonuridae

Taeniopterygidae

i = 7

Empididae -

Ephemeridae

Glossosomatidae Helophoridae

Heptageniidae Lepidostomatidae

Molannidae

Odontoceridae

Polymitarcidae Potamanthidae

Sericostomatidae

i = 6

Athericidae Dryopidae

Haliplidae

Helodidae

'Hydroptilidae

Leptophlebiidae

Leuctridae

Nemouridae

Osmylidae Phryganeidae

Polycentropodidae

Psychodidae

Psychomyidae

Rhyacophilidae

i = 5

Aeschnidae

Blephariceridae

Bythinellidae

Ceratopogonidae

Cordulegasteridae

Ecnomidae

· _Elmidae

Gomphidae Hydraenidae

Leptoceridae

Libellulidae

-- Limoniidae

- Planariidae

Sialidae

Stratiomyidae

-Tipulidae

i = 4

Aphelocheiridae Calopterigidae

Coenagrionidae

Dugesiidae

Dytiscidae

Ephemerellidae

Gyrinidae

Limnebiidae

Limnephilidae

Platycnemidae Simuliidae

Sphaeridae

Tabanidae

Unionidae

i = 3

Caenidae

Corixidae

Dendrocoelidae

Gammaridae

Hydrobiidae Hydropsychidae

Lymnaeidae

Neritidae

Physidae Piscicolidae

Viviparidae

i = 2Atyidae Ancylidae 6 Baetidae

Bithyniidae Glossiphiniidae Cambaridae

Planorbidae

Valvatidae

i = 1Asellidae

Chironomidae

Dreissenidae Erpobdellidae

× Oligochètes

Annexes n°5

Protocole d'analyse semi-quantitative des communautés benthiques : le MAG20.

TELEOS 2000 Note technique interne rédigée par : DECOURCIERE H. (TELEOS) et DEGIORGI F. (TELEOS et LBE de l'Université FC)

Contexte, objectifs et fondements

Les méthodes d'analyse simplifiée des communautés benthiques, généralement exprimées sous forme indicielle, permettent d'apprécier l'évolution dans l'espace et dans le temps de l'aptitude biogène globale des sites d'eau courante. Toutefois, leur degré de sensibilité est insuffisant pour mesurer quantitativement l'impact de plusieurs catégories de perturbations affectant le fonctionnement des milieux lotiques à des échelles plus larges ou suivant des mécanismes pernicieux.

Par exemple, l'Indice Biologique Global Normalisé (NF.T 90.350) ne sanctionne pas assez fidèlement les altérations de la qualité physique subie par les mosaïques d'habitat à l'échelle stationnelle. Généralement, il ne permet pas non plus de quantifier les effets de contaminations toxiques insidieuses, ni d'évaluer les conséquences des colmatages minéraux ou algaux.

Ces « défauts » de sensibilité sont dus à la construction même de ces indices, conçus dans un dessin de perception plus générale et plus synthétique de l'état de santé des cours d'eau. En particulier, le nombre de prélèvements et la finesse de la prospection spatiale des macro invertébrés préconisée par la norme IBGN sont insuffisants pour apprécier, même de façon semi-quantitative, la densité des différents taxons. Parallèlement, son niveau de détermination, « familial » pour la plupart des groupes, est trop imprécis pour garantir sa sensibilité dans le cas d'altérations pernicieuses.

Ces limites s'avéraient déjà flagrantes pour les indices précurseurs de l'IBGN, depuis l'indice biotique (VERNEAUX et TUFFERY 1967) jusqu'à l'IBG (VERNEAUX 1982), en passant par l'IQBG (VERNEAUX et al. 1978) et le CB2 (VENREAUX et al. 1983). Certes des nuances importantes doivent être apportées sur la significativité et la robustesse des différentes méthodes (VERNEAUX 1984). En outre, la performance des indices a nettement augmenté depuis la mise au point de l'IBG (MONNOT 1983). Toutefois, ces différentes approches restent purement qualitatives et insuffisamment sensibles.

Par conséquent, une méthode pratique plus puissante, le MAG20, a été élaborée. Les prémices de cette approche ont été conçues en 1994 au laboratoire d'hydrobiologie de la Faculté des Sciences de Besançon (BACCHI 1994, PARMENTIER 1994). Finalisée par TELEOS en 2000, elle est fondée sur une prospection beaucoup plus complète de l'espace fluvial, s'appuyant sur une description fine de l'habitat aquatique et sur une détermination plus poussée des taxons prélevés.

Modalités spatiales : nombre et répartition des prélèvements

Ce protocole d'échantillonnage balaye systématiquement les trois composantes majeures de l'habitat aquatique : nature du substrat, vitesse de courant et hauteur d'eau (tab. I), alors que le protocole de l'IBGN ne tient pas compte du demier descripteur. En outre, le nombre de placettes prospectées, c'est-à-dire de prélèvements élémentaires réalisés au filet Sûrber de 1/20 de m², est fixé à 20, contre 8 pour l'IBGN, afin de prospecter une gamme d'habitats plus diversifiée.

Codification des substrats/supports et hiérarchisation de leur attractivité

Codes	Désignation
S9	Bryophytes
S8	Spermaphytes immergés
S7	Éléments organiques grossiers (Litières, branchages, racines)
S6	Sédiments minéraux de grande taille (Pierres, galets) 2,5 cm à 25 cm
\$5	Granulats grossiers 0,25 cm à 2,5 cm
84	Spermaphytes émergents
S 3	Sédiments fins +- organiques "vases" ≤ 0,1 mm
S2	Sables et limons < 0,25 cm
S1	Surfaces naturelles et artificielles (Roche, dalle, sols, parois) >25 cm
S0	Algues ou à défaut mame et argile

Codification non hiérarchisée des vitesses et de heuteurs d'eau

Code	Vitesses
V1	< 5 cm/s
V3	6 à 25 cm/s
V5	26 à 75 cm/s
V4	76 à 150 cm/s
V2	> 151 cm/s

Code	Hauteurs
H1	< 5 cm
H2	6 à 25 cm
нз	26 à 50 cm
H4	51 à 100 cm
H5	> 101 cm

Tableau I : codification directive de l'espace fluviatile pour échantillonner les biocénoses benthiques

Lors de l'échantillonnage, chaque couple substrat-vitesse recensé est échantillonné au moins une fois dans la classe de hauteur d'eau où il est le plus représenté. Dans le cas d'une variété de substrat-vitesse inférieure à 20, les prélèvements sont dupliqués pour les couples dominants dans des classes de profondeurs différentes.

Par rapport à la formulation initiale de ce protocole, certains substrats ont été regroupés tandis que les classes de vitesse sont explorées prioritairement aux profondeurs pour choisir les placettes de prélèvements, conformément aux recommandations de BACCHI (1994). Ces adaptations ont également permis de faire coïncider l'échantillonnage stratifié des macro-invertébrés avec la description objective des mosaïques d'habitats qui peut être réalisée parallèlement selon le protocole CSP-DR 5 (1997) finalisé par TELEOS (2001).

Enfin, pour permettre d'effectuer des comparaisons temporelles avec des données acquises antérieurement à l'aide de l'application du protocole IBGN, les 8 premiers prélèvements élémentaires (sur 20), doivent être effectués en suivant les modalités directives cette norme, afin de pouvoir calculer l'indice stationnel correspondant. Puis, les 12 dernières placettes sont échantillonnées selon le protocole MAG20, qui fournit des données semi-quantitatives standard sur l'organisation spatiale des macro-invertébrés.

Modalités temporelles : conditions d'application

Comme dans le protocole IBGN, l'échantillonnage doit être réalisé pendant <u>l'étiage estival</u>, afin de mieux percevoir l'impact des perturbations liée à la qualité de l'eau. Parallèlement, le **débit doit être stabilisé depuis au moins 10 jours** afin d'éviter les pertes ou les apports de faune par la dérive.

Niveaux de détermination

Les prélèvements, fixés à l'aide de formol à 10 %, sont tamisés à 500 µm, puis triés et examinés à l'aide d'une loupe binoculaire. Les Plécoptères, les Ephéméroptères, les Trichoptères, les Coléoptères, les Hétéroptères, les Odonates, les Mollusques, les Achètes et Turbellariés sont déterminés au genre ou à l'espèce si la taxonomie larvaire le permet. La limite taxonomique IBGN a été choisie pour les autres taxons.

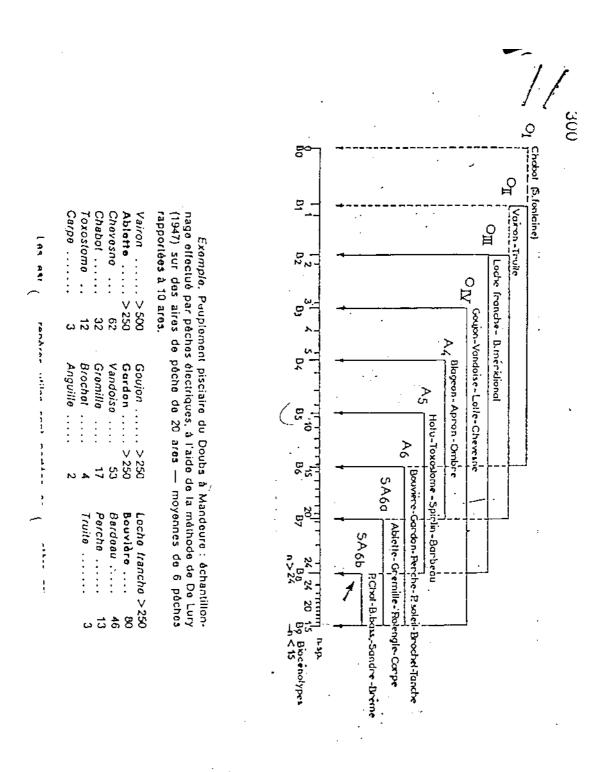
Cette détermination au genre pour la majorité des ordres, par rapport à la famille pour l'IBGN, parait le niveau minimum indispensable pour analyser les structures semiquantitatives des biocénoses benthiques. L'identification à l'espèce serait idéale mais beaucoup plus coûteuse en temps pour la capture, puis la détermination en laboratoire. L'exemple de la famille des *Limnephilidae* (Trichoptère) qui compte en Franche-Comté 16 genres et 28 espèces, regroupant des exigences écologiques différentes, est, à cet égard, démonstratif. En effet, dans ce cas, la palette de nuances constituées par les variations d'abondance de chacun des 16 genres, perçue par l'analyse semi-quantitative utilisée ici, est réduite, dans l'IBGN, à la présence / absence de la famille.

Calcul indiciel et analyse semi-quantitative des biocénoses

La séparation des vingt prélèvements en deux groupes comportant respectivement huit et douze placettes de 1/20ème de m² permet de calculer les indices IBGN et CB2 avec le premier ensemble. Cette approche permet de comparer les données obtenues antérieurement, et qui ont, pour la plupart, été effectuées suivant le protocole IBGN.

Pour l'instant, en l'absence de classification ou de cotation de la sensibilité des genres larvaires identifiables, il n'existe pas d'indice semi-quantitatif MAG20. En revanche les métriques classiques de description des peuplements peuvent être utilisés. Il s'agit essentiellement de la variété et de l'abondance, considérées globalement et par ordre.4

BIBLIOGRAPHIE:


- AFNOR, 1992 : Détermination de l'indice biologique global normalisé (I.B.G.N.). Norme NF.T 90-350 9 p.
- BACCHI M., 1994: Recherches sur la macrofaune benthique de la Haute-Loue Structuration des habitats Evolutiondes peuplements macrobenthiques depuis 1973, Mém. D.E.S.S. « Eaux continentales, pollution et aménagement » Univ. Fr.-Comté, Bosancon : 38 p. + ann.
- Conseil Supérieur de la Pèche & Téléos (B.E.), 1997 : Etat physique des cours d'eau Méthode de description à l'échelle du tronçon et de la station. Rap. Cons. Sup. Pêche, dél. rég. Lyon, 25 p.
- MONNOT A., 1982 : Indice biologique de qualité générale des cours d'eau (I.B.G.) exemples d'application de la méthode 4 (3), 22-31.
- PARMENTIER E., 1994 : Eude de la biocosnose benthique du Drugeon. Application d'un nouveau protocole d'échantillonnage. Bilan de la qualité habitationnelle. Analyse biocénotique générique. Bilan de la qualité faunistique. Mém. D.U.E.H.H., Lab. Hydrobiol. Univ. Fr.-Comté, Besançon : 69 p. + ann.
- TUFFERY G. & VERNEAUX J., 1967 : Une méthode zoologique pratique de détermination de la qualité des eaux courantes Indices biotiques Ann. Sci. Univ. Fr.-Comté, Besançon, 3, 79-89.
- VERNEAUX J. & coll., 1982 : Expression biologique, qualitative et pratique de l'aptitude des cours d'eau au développement de la faune benthique Un coefficient d'aptitude biogène : le Cb2. Protocole expérimental, Trav. Lab. Hydrobiol, Univ. Fr.-Comté, Besançon, 19 p.
- VERNEAUX J. & cott., 1982 : Une nouvelle méthode pratique d'évaluation de la qualité des eaux courantes un indice biologique de qualité générale (I.B.G.) Ann. Sci. Univ. Fr.-Comté, Besançon, 4 (3), 11-21.
- VERNEAUX J., 1984 : Méthodes et problèmes de détermination de la qualité des eaux courantes Bull. Ecol. t.15 :1-6.
- VERNEAUX J., FAESSEL B. & MALESIEUX G.,1976: "Note préliminaire à la proposition de nouvelles méthodes de détermination de la qualité des eaux courantes," Trav. Lab. Hydrobiol. Univ. Fr.-Comté, et C.T.G.R.E.F., 16 p.
- VERNEAUXJ., 1980 a : Fondements biologíques et écologiques de l'étude de la qualité des eaux continentales Principales méthodes biologiques - in PESSON éd., 289-345.

Annexes n • 6 Biotypologie au Genre

	pological traits of 90 genera of aquatic insects (PTE)		cts (PTE)	genera	typological amplitude		average
The Doubs River	templet		(0-10)		↑ limits	tak	tp (0-10)
genera	typological a	amalitude	average	Hydroptila	3.0-10.0	7.0	6.5
Q =			, tp	Isoperla	1.0-8:0	7.0	. 4.2
	个 limits	(12)	(0-10)	lthytrichia	3.0-7.6	4.0	5.5
Adicella	0.0-2.5	2.5	0.5	Lasiocephala	3.6-7.2	3.6	5.6
gapetus	0.0-7.3	7.3	4.4	Lepidostoma	4.0-7.0	3.0	5.8
graylea	7.4-10.0	2.6	9.5	Leptocerus	8.0-10.0	2.0	10.0
lainites	1.5-7.6	6.1	4.2	Leptoterus Leuctra	1.0-8.4	8.4	3.9
llogamus	2.8-7.0	4.2	4.6	Lithax	0.0-4.3	4.3	1.6
mphinemura	0.0-6.4	6.4	5.8		2.5-6.5		
nabolia	0.8-8.7	7.9	4.9	Melampophylax		4.0	4.3
thripsodes	4.0-10.0	6.0	8.1	Micrasema	4.0-7.0	3.0	5.9
aetis	0.0-9.0	9.0	5.6	Molanna	8.0-10.0	2.0	10.0
eraeodes	0.0-3.0	3.0	1.4	Mystacides	6.0-10.0	4.0	8.7
lesdolus	5.0-7.3	2,3	6.6	Nemoura	0.0-7.0	7.0	1.7
rachycentrus	2.4-7.0	4.6	4.4	Nemurella	0.0-4.0	4.0	0.8
lrachyptera	1.5-7.0	5.5	4.1	Neureclipsis	6.0-10.0	4.0	7.9
aenis	3.4-10.0	6.6	7.8	Nigrobaetis	4.0-8.5	4.5	5.6
apnia	0.0-4.0	4.0	2.5	Notidobia	2.0-7.0	5.0	4.5
entroptilum	2.1-8.5	3.2	5.5	Odontocerum	2.0-7.0	5.0	4.5
Ceraclea	5.0-10.0	5.0	8.5	Oecetis	7.0-10.0	3.0	8.3
haetopterygopsis	0.0-4.0	4.0	1.4	Oligoneuriella	5.2-8.0	2.8	6.4
haetopteryx	1.5-7.9	6.4	3.8	Oligoplectrum	3.0-6.5	3.5	4.5
heumatopsyche	4.2-7.0	2.8	6.3	Oxyethira	7.0-10.0	3.0	8.5
Chimarra	4.0-8.0	4.0	6.1	Paraleptophlebia	2.0-8.2	6.2	5.3
lhloroperla 	4.0-8.0	4.0	6.5	Perla	2.5-7.3	4.8	5.2
Choroterpes	6.0-8.5	2.5	7.4	Perlodes	2.0-5.4	2.4	3.8
loeon	3.2-10.0	6.8	7.6	Philopotamus	1.0-6.0	5.0	2.6
Trunoecia -	0.0-3.2	3.2	0.5	Plectrocnemia	0.0-6.2	6.2	2.1
yrnus	4.6-10.0	5.4	8.4	Polycentropus	[7.0	7.6
inocras	2.2-7.0	4.8	4.1	,	3.0-10.0		1
rusus	0.0-5.2	5.2	1.7	Potamanthus	7.6-10.0	2.4	9.0
cclisopteryx	0.7-6.2	5.5	3.5	Potamophylax	1.8-7.4	5.6	3.9
cdyonurus	1.0-8.5	7.5	4.7	Procloeon	4.0-9.0	5.0	6.7
Conomus	6.0-10.0 3.5-7.2	4.0	9.4	Protonemura	0.0-6.5	6.5	2.8
lectrogena peorus	2.5-6.5	3.7	5.7	Psychomyja	2.0-8.5	6.5	6.5
•		4.0	4.5	Rhadicoleptus	0.0-2.2	2.2	0.5
Sphemera Sphoron	1.5-10.0 7.5-10.0	8.5 2.5	7.3 8.9	Rhithrogena	1.5-7.5	6.0	4.1
pnoron Suleuctra	5.6-9.0	3.4	8.9 6.6	Rhyacophila	1.9-8.0	6.1	3.7
ilossosoma	2.5-7.0	4.5	6.6 3.4	Sericostoma	1.5-6.5	5.0	4.0
Hyphotaelius	0.5-6.0	4.5 5.5	1.5	Serratella	1.0-8.5	7.5	5.6
ioera	4.6-7.8	3.2	6.1	Silo	0.0-7.0	7.0	4.5
labroleptoides	0.0-7.0	7.0	4.4	Siphonoperla	1.0-5.7	4.7	2.6
labrophlebia	0.0-8.0	8.0	4.5	Stenophylax	0.0-2.5	2.5	1.2
lalesus	2.0-7.6	5.6	5.3	Taeniopteryx	3.0-9.0	6.0	6.8
leptagenia	6.0-9.0	3.0	7.8	Tinodes	1.0-8.5	7.5	4.8
lydatophylax	3.0-7.0	4.0	4.3	Torleya	3.5-7.5	4.0	5.5
dydropsyche	2.5-10.0	7.5	6.0	Wormaldia	0.0-4.2	4.0	1.3

Annexes n°7

Abaque biotypologique Ichtyologique

Annexes n°8

Protocole d'analyse de qualité des mosaïques d'habitats à l'échelle stationnelle.

IAM et ISCA

La méthode utilisée est une analyse cartographique standard de la qualité des mosaïques d'habitats aquatiques qui a été mise au point par la DR 5 du CSP (DEGIORGI et al., 1993-1997) et finalisée par TELEOS (1998). Cette approche, testée et validée sur plusieurs dizaines de rivières, fournit des images comparables de l'hétérogénéité et de l'attractivité biogène d'un cours d'eau à l'échelle de la station.

A qualité et niveau trophique égaux, les potentialités piscicoles d'un site d'eau courante sont en effet déterminées par la diversité et la qualité des combinaisons de hauteurs d'eau, de vitesses de courant et de substrats/supports. La démarche diagnostique utilisée consiste donc à réaliser une cartographie codifiée de chacune de ces composantes de la qualité physique, puis de considérer leur combinaison. Les compositions respectives des différentes mosaïques, considérées une par une puis superposées, peuvent ainsi être appréciées et confrontées d'une station à l'autre.

Les limites des classes d'hétérogénéité de chaque composante ont été déterminées statistiquement. Leur combinaison définit des zones d'attraction différentielle vis-à-vis des poissons : elles sont appelées « pôles d'attraction ». Cette notion intègre l'aspect dynamique de l'intérêt offert par un habitat pour l'ensemble des espèces.

Les capacités piscicoles associées à la structure physique d'une station sont chiffrées globalement et non pas reconstituées placette par placette, ni fondées sur la définition de *preferenda* spécifiques associées séparément à chaque descripteur fondamental (substrat, profondeur, vitesse). Leur évaluation diffère donc au plan conceptuel de celle obtenue par la mise en ÿ uvre de la méthode des « micro-habitats » ou de ses dérivés.

Sur le terrain, les vitesses et les hauteurs d'eau sont mesurées et repérées sur des transects à l'aide d'une jauge graduée, d'un courantomètre (marque *OTT hydrométrie*, modèle *Nautilus C 2000/Sensa Z300*) et de plusieurs décamètres tandis que les placettes associées aux différents substrats/supports, dont l'attractivité est hiérarchisée, sont métrées à l'aide d'un topofil. Des lignes d'isovitesses et d'isoprofondeurs sont alors tracées par intrapolation entre les différents transects ; dans certains cas, les limites de zones obtenues sont vérifiées par des mesures ponctuelles complémentaires.

Les cartographies doivent être réalisées dans des conditions d'étiage, et, dans le cas de démarche comparative, pour des gammes de débits similaires. Les cartes obtenues permettent de visualiser l'intérêt ou les lacunes des mosaïques d'habitat. De façon plus synthétique, une série d'indices resitue les résultats obtenus pour chaque station sur des échelles d'hétérogénéité et d'attractivité biogène.

• Var = variété: nombre de catégories (de substrats/supports) ou de classes (de

vitesses et de profondeurs) pour chacune des composantes de la

qualité des mosaïques d'habitat.

• **Div = diversité :** mesure de la complexité et de l'hétérogénéité quantitative de la

répartition des surfaces entre les catégories de chaque

composante de la qualité de l'habitat :

$$DIV = -\sum_{n}^{1} Si \times \left[log_{10} (Si) \right]$$

Où n est le nombre de catégories (n = var)

Si est la proportion en surface de chaque pôle d'attraction

L'indice de diversité correspond à un indice de Shannon. Pour pouvoir l'interpréter, il est nécessaire de calculer sa valeur maximale (H'max), qui est celle qu'aurait cet indice sous l'hypothèse d'équirépartition. L'équitabilité (E), rapport entre H' et H'max, est ensuite calculé.

• IAM : Indice d'Attractivité Morphodynamique

Cet indice sanctionne la variété des classes de hauteurs d'eau, de vitesses et de substrats/supports ainsi que l'attractivité des substrats/supports pour l'ichtyofaune.

$$IAM = \sum (Si \times Attract.(subs.)) \times Var(subs) \times var(h.e) \times Var(v.)$$

Où: v. vitesse

h.e hauteur d'eau subs. substrat/support

Attract. attractivité des substrats/supports

Si proportion en surface de chaque substrat présent

Afin de pouvoir comparer cet indice avec la théorie, un abaque renseignant sur l'IAM théorique en fonction de largeur a été utilisé (DEGIORGI non publié, cf. annexe C).

La hiérarchisation et la cotation de l'attractivité des substrats/supports ont été déterminées statistiquement sur plusieurs dizaines de rivières. Elles sont définies dans la grille suivante :

Substrat (CODE)	Attractivité
Branchages, grosses racines (BRA)	100
Sous berges (BER)	90
Hydrophytes immergés (HYI)	80
Sources, résurgences, affluents (AFF)	70
Blocs avec cache (BLO)	60
Galets (GAL)	50
Hélophytes (HEL)	40
Chevelus racinaires, végétations rases (CHV)	40
Blocs sans anfractuosité (BLS)	30
Galets et graviers mélangés (GGR)	25
Graviers (GRA)	20
Galets pavés (GLS)	10
Litières organiques (LIT)	10
Sables (SAB)	8
Eléments fins, limons, vases (FIN)	4
Dalles, surfaces indurées (sans cache) (DAL)	1

Tableau 1 : Attractivité globale des substrats/supports

L'IAM constitue une approche simplifiée car il ne tient pas compte de l'attractivité des pôles et en particulier de la variation de la hauteur d'eau et les courants qui les baignent. Toutefois, la démarche suivie permet d'apprécier le degré d'homogénéisation des habitats aquatiques et répond particulièrement bien à l'objectif défini pour cette étude.

Substrat (CODE)	Attractivité Astacicole
Branchages, grosses racines immergées(BRA)	100
Sous berges (BER)	100
Chevelus racinaires, bryophytes (CHE)	90
Galets plats (GAL,p)	90
Galets (GAL)	80
Sources, résurgences, affluents (AFF)	80
Blocs avec caches (BLO)	80
Hydrophytes immergés (HYI)	70
Litières organiques (LIT)	60
Galets et graviers mélangés (GGR)	60
Dalle marneuse ou argileuse fouissable (Dal,f)	50
Hélophytes (HEL)	40
Sables (SAB)	30
Graviers (GRA)	20
Eléments fins, limons, vases (FIN)	10
Galets pavés (GLS)	5
Blocs sans anfractuosité (BLS)	2
Dalles, surfaces indurées (sans cache) (DAL)	1

Tableau 2 : Attractivité astacicole des substrats/supports